Python 数据结构和算法:在 Python 中如何实现链表和树结构?

简介: Python 数据结构和算法:在 Python 中如何实现链表和树结构?

在Python中,你可以使用类来实现链表和树结构。下面分别介绍如何实现链表和树。

链表实现

单链表

class Node:
    def __init__(self, data=None):
        self.data = data
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None

    def append(self, data):
        new_node = Node(data)
        if not self.head:
            self.head = new_node
            return
        last_node = self.head
        while last_node.next:
            last_node = last_node.next
        last_node.next = new_node

# 使用示例
linked_list = LinkedList()
linked_list.append(1)
linked_list.append(2)
linked_list.append(3)

双向链表

class DoubleNode:
    def __init__(self, data=None):
        self.data = data
        self.prev = None
        self.next = None

class DoublyLinkedList:
    def __init__(self):
        self.head = None

    def append(self, data):
        new_node = DoubleNode(data)
        if not self.head:
            self.head = new_node
            return
        last_node = self.head
        while last_node.next:
            last_node = last_node.next
        last_node.next = new_node
        new_node.prev = last_node

# 使用示例
doubly_linked_list = DoublyLinkedList()
doubly_linked_list.append(1)
doubly_linked_list.append(2)
doubly_linked_list.append(3)

树结构实现

二叉树

class TreeNode:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.val = key

# 使用示例
root = TreeNode(1)
root.left = TreeNode(2)
root.right = TreeNode(3)
root.left.left = TreeNode(4)
root.left.right = TreeNode(5)

二叉搜索树

class BinarySearchTree:
    def __init__(self, key):
        self.left = None
        self.right = None
        self.val = key

    def insert(self, key):
        if key < self.val:
            if self.left is None:
                self.left = BinarySearchTree(key)
            else:
                self.left.insert(key)
        elif key > self.val:
            if self.right is None:
                self.right = BinarySearchTree(key)
            else:
                self.right.insert(key)

# 使用示例
bst = BinarySearchTree(5)
bst.insert(3)
bst.insert(7)
bst.insert(1)
bst.insert(4)

这些示例提供了基本的数据结构,你可以根据需要进行扩展。链表和树的实现通常会涉及到节点的插入、删除、查找等操作,具体实现方式可能因应用场景而有所不同。

相关文章
|
1月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
70 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
20天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
48 4
|
22天前
|
算法 安全 搜索推荐
2024重生之回溯数据结构与算法系列学习之单双链表精题详解(9)【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构王道第2.3章之IKUN和I原达人之数据结构与算法系列学习x单双链表精题详解、数据结构、C++、排序算法、java、动态规划你个小黑子;这都学不会;能不能不要给我家鸽鸽丢脸啊~除了会黑我家鸽鸽还会干嘛?!!!
|
22天前
|
存储 Web App开发 算法
2024重生之回溯数据结构与算法系列学习之单双链表【无论是王道考研人还是IKUN都能包会的;不然别给我家鸽鸽丢脸好嘛?】
数据结构之单双链表按位、值查找;[前后]插入;删除指定节点;求表长、静态链表等代码及具体思路详解步骤;举例说明、注意点及常见报错问题所对应的解决方法
|
1月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
33 4
|
20天前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
39 0
|
1月前
|
存储
[数据结构] -- 双向循环链表
[数据结构] -- 双向循环链表
23 0
|
1月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
60 4
|
4月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【7月更文挑战第22天】在大数据领域,Python算法效率至关重要。本文深入解析时间与空间复杂度,用大O表示法衡量执行时间和存储需求。通过冒泡排序(O(n^2)时间,O(1)空间)与快速排序(平均O(n log n)时间,O(log n)空间)实例,展示Python代码实现与复杂度分析。策略包括算法适配、分治法应用及空间换取时间优化。掌握这些,可提升大数据处理能力,持续学习实践是关键。
125 1
|
5月前
|
存储 机器学习/深度学习 算法
Python算法基础教程
Python算法基础教程
31 0
下一篇
无影云桌面