OpenCV中阈值处理函数和二值化、反二值化的讲解及实战(附Python源码)

简介: OpenCV中阈值处理函数和二值化、反二值化的讲解及实战(附Python源码)

需要源码请点赞关注收藏后评论区留言私信~~~

阈值是图像处理中一个很重要的概念,类似一个“像素值的标准线”。所有像素值都与这条“标准线”进行比较,最后得到3种结果:像素值比阈值大、像素值比阈值小或像素值等于阈值。程序根据这些结果将所有像素进行分组,然后对某一组像素进行“加深”或“变淡”操作,使得整个图像的轮廓更加鲜明,更容易被计算机或肉眼识别。下面将对阈值的相关内容进行详细的介绍

一、阈值处理函数

在图像处理的过程中,阈值的使用使得图像的像素值更单一,进而使得图像的效果更简单,首先把一幅彩色图像转换为灰度图像,这样图像的像素值取值范围简化为0-255,然后通过阈值转换后的灰度图像呈现出只有纯黑色和纯白色的视觉效果

threshold方法用于对图像进行阈值处理,语法格式如下

retval,dst=cv2.threshold(src,thresh,maxval,type)

thresh 阈值 在125-150取值效果较好

maxval 阈值处理采用的最大值

type 阈值处理类型 常用类型和含义如下图所示

retval 处理时采用的阈值

dst 经过阈值处理后的图像

二、二值化

二值化处理和反二值化处理使得灰度图像的像素值两极分化,灰度图像呈现出只有纯黑色和纯白色的视觉效果

进行二值化处理时,每一个像素值都会与阈值进行比较,将大于阈值的像素值变为最大值,小于或者等于阈值的像素值变为0

二值化处理黑白渐变图如下

import cv2
img = cv2.imread("black.png", 0)  # 将图像读成灰度图像
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
cv2.imshow('img', img)  # 显示原图
cv2.imshow('dst1', dst1)  # 二值化阈值处理效果图
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

通过修改阈值大小可以调整黑白交界的位置

import cv2
img = cv2.imread("black.png", 0)  # 将图像读成灰度图像
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
t2, dst2 = cv2.threshold(img, 210, 255, cv2.THRESH_BINARY)  # 调高阈值效果
cv2.imshow('dst1', dst1)  # 展示阈值为127时的效果
cv2.imshow('dst2', dst2)  # 展示阈值为210时的效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

 

可见边界处有了明显的变化

下面我们观察不同最大值的处理效果

当将最大值调到150时表现为灰色而不是255的纯白色

 

import cv2
img = cv2.imread("black.png", 0)  # 将图像读成灰度图像
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
t3, dst3 = cv2.threshold(img, 127, 150, cv2.THRESH_BINARY)  # 调低最大值效果
cv2.imshow('dst1', dst1)  # 展示最大值为255时的效果
cv2.imshow('dst3', dst3)  # 展示最大值为15时的效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

三、反二值化处理

其结果为二值化处理的相反结构,将大于阈值的像素值变为0,将小于或者等于阈值的像素值变为最大值

下面对图像进行反二值化处理

彩色图像经过反二值化处理后,因为各通道的颜色分量值不同,会呈现混乱的效果

import cv2
img = cv2.imread("black.png", 0)  # 将图像读成灰度图像
t1, dst1 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)  # 二值化阈值处理
t4, dst4 = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY_INV)  # 反二值化阈值处理
cv2.imshow('dst1', dst1)  # 展示二值化效果
cv2.imshow('dst4', dst4)  # 展示反二值化效果
cv2.waitKey()  # 按下任何键盘按键后
cv2.destroyAllWindows()  # 释放所有窗体

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
14天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从基础到实战
【10月更文挑战第36天】本文将带你走进Python的世界,从基础语法出发,逐步深入到实际项目应用。我们将一起探索Python的简洁与强大,通过实例学习如何运用Python解决问题。无论你是编程新手还是希望扩展技能的老手,这篇文章都将为你提供有价值的指导和灵感。让我们一起开启Python编程之旅,用代码书写想法,创造可能。
|
15天前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
25 1
|
16天前
|
机器学习/深度学习 JSON API
Python编程实战:构建一个简单的天气预报应用
Python编程实战:构建一个简单的天气预报应用
33 1
|
11天前
|
数据采集 存储 数据处理
探索Python中的异步编程:从基础到实战
【10月更文挑战第39天】在编程世界中,时间就是效率的代名词。Python的异步编程特性,如同给程序穿上了一双翅膀,让它们在执行任务时飞得更高、更快。本文将带你领略Python异步编程的魅力,从理解其背后的原理到掌握实际应用的技巧,我们不仅会讨论理论基础,还会通过实际代码示例,展示如何利用这些知识来提升你的程序性能。准备好让你的Python代码“起飞”了吗?让我们开始这场异步编程的旅程!
26 0
|
15天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
1月前
|
计算机视觉
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
这篇文章详细介绍了OpenCV库中的图像二值化函数`cv2.threshold`,包括二值化的概念、常见的阈值类型、函数的参数说明以及通过代码实例展示了如何应用该函数进行图像二值化处理,并展示了运行结果。
364 0
Opencv学习笔记(三):图像二值化函数cv2.threshold函数详解
|
2月前
|
算法 计算机视觉
opencv图像形态学
图像形态学是一种基于数学形态学的图像处理技术,它主要用于分析和修改图像的形状和结构。
51 4
|
2月前
|
存储 计算机视觉
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
本文介绍了使用OpenCV进行图像读取、显示和存储的基本操作,以及如何绘制直线、圆形、矩形和文本等几何图形的方法。
Opencv的基本操作(一)图像的读取显示存储及几何图形的绘制
|
3月前
|
算法 计算机视觉 Python
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
该文章详细介绍了使用Python和OpenCV进行相机标定以获取畸变参数,并提供了修正图像畸变的全部代码,包括生成棋盘图、拍摄标定图像、标定过程和畸变矫正等步骤。
python利用opencv进行相机标定获取参数,并根据畸变参数修正图像附有全部代码(流畅无痛版)
WK
|
3月前
|
编解码 计算机视觉 Python
如何在OpenCV中进行图像转换
在OpenCV中,图像转换涉及颜色空间变换、大小调整及类型转换等操作。常用函数如`cvtColor`可实现BGR到RGB、灰度图或HSV的转换;`resize`则用于调整图像分辨率。此外,通过`astype`或`convertScaleAbs`可改变图像数据类型。对于复杂的几何变换,如仿射或透视变换,则可利用`warpAffine`和`warpPerspective`函数实现。这些技术为图像处理提供了强大的工具。
WK
113 1
下一篇
无影云桌面