【数据挖掘】Lasso回归原理讲解及实战应用(超详细 附源码)

简介: 【数据挖掘】Lasso回归原理讲解及实战应用(超详细 附源码)

需要源码请点赞关注收藏后评论区留言私信~~~

Lasso回归

岭回归无法剔除变量,而Lasso(Least Absolute Shrinkage and Selection Operator)回归模型,将惩罚项由L2范数变为L1范数,可以将一些不重要的回归系数缩减为0,达到剔除变量的目的

逐步回归

在处理多个自变量时,需要使用逐步回归(Stepwise Regression)。逐步回归中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作

逐步回归是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量并通过同时添加/删除基于指定标准的协变量来拟合模型

常用的逐步回归方法有

标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测

向前选择法从模型中最显著的预测开始,然后为每一步添加变量

向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显著性的变量

逐步回归的目的是使用最少的预测变量数来最大化预测能力,是处理高维数据集的方法之一

如何正确选择回归模型

在多类回归模型中,基于自变量和因变量的类型,数据的维数以及数据的其它基本特征的情况下,选择最合适的技术非常重要。以下是你要选择正确的回归模型的关键因素

1.数据探索是构建预测模型的必然组成部分。在选择合适的模型时,比如识别变量的关系和影响时,它应该首选的一步

2. 比较适合于不同模型的优点,我们可以分析不同的指标参数,如统计意义的参数,R-square,Adjusted R-square,AIC,BIC以及误差项,另一个是Mallows’ Cp准则。这个主要是通过将模型与所有可能的子模型进行对比(或谨慎选择他们),检查在你的模型中可能出现的偏差

3.交叉验证是评估预测模型最好的方法。在这里,将你的数据集分成两份(一份做训练和一份做验证)。使用观测值和预测值之间的一个简单均方差来衡量你的预测精度

4.如果你的数据集是多个混合变量,那么你就不应该选择自动模型选择方法,因为你应该不想在同一时间把所有变量放在同一个模型中

5.它也将取决于你的目的。可能会出现这样的情况,一个不太强大的模型与具有高度统计学意义的模型相比,更易于实现

6.回归正则化方法(Lasso,Ridge和ElasticNet)在高维和数据集变量之间多重共线性情况下运行良好

Lasso回归实战

模型回归效果如下

部分代码如下

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import r2_score
#def main():
# 产生一些稀疏数据
np.random.seed(42)
n_samples, n_features = 50, 100
X = np.random.randn(n_samples, n_features) 
# randn(...)产生的是正态分布的数据
coef = 3 * np.random.randn(n_features)
# 每个特征对应一个系数
inds = np.arange(n_features)
np.rinds[10:]] = 0 
# 稀疏化系数--随机地把系数向量1x200的其中10个值变为0
y = np.dot(X, coef) 
# 添加噪声:零均值,标准差为 0.01 的高斯噪声
y += 0so 模型
from sklearn.linear_model import Lasso
alpha = 0.1
lasso = Lasso(alpha=alpha)
y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test)
r2_score_lasso = r2_score(y_test, y_pred_lasso)
print("r^2 on test data : %f" % r2_score_lasso)
plt.plot(lasso.coef_, color='gold', linewidth=2,label='Lasso coefficients')
plt.title("Lasso R^2: %f" % r2_score_lasso)
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
4月前
|
机器学习/深度学习 分布式计算 数据挖掘
数据仓库与数据挖掘技术的结合应用
【7月更文挑战第30天】数据仓库与数据挖掘技术的结合应用是现代企业实现高效决策和精准分析的重要手段。通过整合高质量的数据资源,利用先进的数据挖掘技术,企业可以更好地理解市场、客户和业务,从而制定科学的决策和战略。未来,随着技术的不断进步和应用场景的不断拓展,数据仓库与数据挖掘技术的结合应用将会为企业的发展提供更多机遇和挑战。
|
3月前
|
数据采集 自然语言处理 数据可视化
基于python数据挖掘在淘宝评价方面的应用与分析,技术包括kmeans聚类及情感分析、LDA主题分析
本文探讨了基于Python数据挖掘技术在淘宝评价分析中的应用,涵盖了数据采集、清洗、预处理、评论词频分析、情感分析、聚类分析以及LDA主题建模和可视化,旨在揭示淘宝客户评价中的潜在模式和情感倾向,为商家和消费者提供决策支持。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
【数据挖掘】PCA 主成分分析算法过程及原理讲解
主成分分析(PCA)的原理和算法过程。
74 0
|
5月前
|
数据采集 数据可视化 数据挖掘
数据挖掘实战:使用Python进行数据分析与可视化
在大数据时代,Python因其强大库支持和易学性成为数据挖掘的首选语言。本文通过一个电商销售数据案例,演示如何使用Python进行数据预处理(如处理缺失值)、分析(如销售额时间趋势)和可视化(如商品类别销售条形图),揭示数据背后的模式。安装`pandas`, `numpy`, `matplotlib`, `seaborn`后,可以按照提供的代码步骤,从读取CSV到数据探索,体验Python在数据分析中的威力。这只是数据科学的入门,更多高级技术等待发掘。【6月更文挑战第14天】
482 11
|
5月前
|
数据采集 机器学习/深度学习 数据可视化
数据挖掘实战:Python在金融数据分析中的应用案例
Python在金融数据分析中扮演关键角色,用于预测市场趋势和风险管理。本文通过案例展示了使用Python库(如pandas、numpy、matplotlib等)进行数据获取、清洗、分析和建立预测模型,例如计算苹果公司(AAPL)股票的简单移动平均线,以展示基本流程。此示例为更复杂的金融建模奠定了基础。【6月更文挑战第13天】
1452 3
|
5月前
|
人工智能 分布式计算 算法
数据挖掘实战随笔更新清单
这是一系列技术博客的摘要,涵盖了多个主题。包括Elasticsearch实战经验、Maxcompute中的Geohash转换和GPS处理、Python环境配置与管理(如Jupyter、Miniforge、Miniconda)、批量接口调用、多进程CSV图片下载、Excel到Markdown转换、Scikit-learn的异常检测(OC-SVM)和模型总结、人工智能领域的图像分类和识别、文本挖掘算法以及数仓相关的行转列处理。所有文章都在持续更新和补充中。
47 2
|
6月前
|
算法 搜索推荐 数据挖掘
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(续)
|
6月前
|
机器学习/深度学习 数据采集 算法
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)
数据挖掘实战 —— 抖音用户浏览行为数据分析与挖掘(二)