【Python机器学习】感知器进行信用分类和使用KNN进行图书推荐实战(附源码和数据集)

简介: 【Python机器学习】感知器进行信用分类和使用KNN进行图书推荐实战(附源码和数据集)

需要源码和数据集请点赞关注收藏后评论区留言私信~~~

一、KNN进行图书推荐

KNN算法思想简介

KNN 可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一。注意:KNN 算法是有监督学习中的分类算法,它看起来和另一个机器学习算法 K-means 有点像(K-means 是无监督学习算法),但却是有本质区别的。

KNN 的全称是 K Nearest Neighbors,意思是 K 个最近的邻居。从这个名字我们就能看出一些 KNN 算法的蛛丝马迹了。K 个最近邻居,毫无疑问,K 的取值肯定是至关重要的,那么最近的邻居又是怎么回事呢?其实,KNN 的原理就是当预测一个新的值 x 的时候,根据它距离最近的 K 个点是什么类别来判断 x 属于哪个类别。

要度量空间中点距离的话,有好几种度量方式,比如常见的曼哈顿距离计算、欧式距离计算等等。不过通常 KNN 算法中使用的是欧式距离。这里只是简单说一下,拿二维平面为例,二维空间两个点的欧式距离计算公式如下:

该如何确定 K 取多少值好呢?答案是通过交叉验证(将样本数据按照一定比例,拆分出训练用的数据和验证用的数据,比如6:4拆分出部分训练数据和验证数据),从选取一个较小的 K 值开始,不断增加 K 的值,然后计算验证集合的方差,最终找到一个比较合适的 K 值。

 

描述:下面比表7.5中是一个图书网站的数据,有5位用户对4本图书进行了评分。详细评分的值越大表示喜好越强烈。使用KNN模型找出与用户F最相似的用户。

预测结果如下 用户C与用户F喜好最为相似

部分代码如下

# -*- coding: utf-8 -*-
import numpy as np
from sklearn import neighbors
knn = neighbors.KNeighborsClassifier(1)   #取得 knn 分类器
data = np.array([[1.1, 1.5, 1.4, 0.2],
                 [1.9, 1.0, 1.4 ,0.2],
                 [1.7, 1.2, 1.3, 0.2],
                 [2.6, 2..2]])
labels = np.array(['A','B','C','D','E'])
knn.fit(data)
print("预测结果:",knn.predict(np.array([[1.6, 1.5, 1.2, 0.1]]).reshape(1,-1)))

二、使用感知器Perceptron进行信用分类

感知机(perceptron),又称“人工神经元”或“朴素感知机”,由Frank Rosenblatt于1957年提出。作为神经网络的起源算法,通过深入学习可以帮助我们更好的理解神经网络的部分工作原理。

感知机接受多个输入信号,输出一个信号。感知机的信号只有“0(不传递信号)”和“1(传递信号)”两种。

单个感知机的局限性就在于它只能表示由一条直线分割的空间,对于非线性问题(即线性不可分问题)仅用单个感知机无法解决。

使用感知器对信用分类结果如下

可以看出有一条很明显的分界线将信用分成两个部分

部分代码如下

# -*- encoding:utf-8 -*-
from sklearn.linear_model import Perceptron
from sklearn.cross_validation import train_test_split
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
def loaddata(): 
    people = pd.read_csv("credit-overdue.csv", header=0) # 加载数据集
    X = people[['debt','income']].values
    y = people['overdue'].values
    return X,y 
print("Step1:read data...")
x,y=loaddata() 
#拆分为训练数据和测试数据
print("Step2:fit by Perceptron...")
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0) 
#将两类值分别存放、以便显示
positive_x1=[x[i,0]for i in range(len(y)) if y[i]==1]
positive_x2range(len(y)) if y[i]==0] 
#定义感知机
clf=Perceptron(n_iter=100)
clf.fit(x_train,y_train)
print("Step3:get the weights and bias...")
#得到结果参数
weights=clf.coef_
bias=clf.intercept_
print('  权重为:',weights,'\n  截距为:',bias)
print("Step4:compute the accuracy...")    
#使用测p5:draw with the weights and bias...")
plt.scatter(positive_x1,positive_x2, marker='^',c='red')
plt.scatter(negetive_x1,negetive_x2,c='blue')
#显示感知机生成的分类线 
line_x=np.arange(0,4)
line_y=line_x*(-weights[0][0]/weights[0][1])-bias
plt.plot(line_x,line_y)
plt.show()

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
数据采集 Python
Python实用记录(七):通过retinaface对CASIA-WebFace人脸数据集进行清洗,并把错误图路径放入txt文档
使用RetinaFace模型对CASIA-WebFace人脸数据集进行清洗,并将无法检测到人脸的图片路径记录到txt文档中。
38 1
|
4天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
17 1
|
1月前
|
数据可视化 数据挖掘 大数据
Python 数据分析入门:从零开始处理数据集
Python 数据分析入门:从零开始处理数据集
|
3月前
|
数据可视化 数据挖掘 索引
【python】Python马铃薯批发市场交易价格数据分析可视化(源码+数据集)【独一无二】
【python】Python马铃薯批发市场交易价格数据分析可视化(源码+数据集)【独一无二】
|
3月前
|
数据采集 数据可视化 Python
【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】
【python】python猫眼电影数据抓取分析可视化(源码+数据集+论文)【独一无二】
114 1
|
3月前
|
Python
python 随机划分图片数据集以及移动标注
这篇文章提供了一个Python脚本,用于随机划分图片数据集为训练集和测试集,并将对应的标注文件移动到相应的子文件夹中,以减少训练使用的数据量。
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
【python】python心理健康医学数据分析与逻辑回归预测(源码+数据集+论文)【独一无二】
【python】python心理健康医学数据分析与逻辑回归预测(源码+数据集+论文)【独一无二】
|
3月前
|
数据采集 数据可视化 数据处理
【Python】Python化妆品评论贝叶斯情感分析可视化(源码+数据集)【独一无二】
【Python】Python化妆品评论贝叶斯情感分析可视化(源码+数据集)【独一无二】
|
3月前
|
供应链 数据可视化 搜索推荐
【python】python销售数据分析可视化(源码+论文+数据集)【独一无二】(下)
【python】python销售数据分析可视化(源码+论文+数据集)【独一无二】(下)
|
3月前
|
数据采集 数据可视化 数据挖掘
【python】python销售数据分析可视化(源码+论文+数据集)【独一无二】(上)
【python】python销售数据分析可视化(源码+论文+数据集)【独一无二】(上)