Python21day学习---numpy基础操作----day18

简介: Python21day学习---numpy基础操作----day18

一、Numpy 介绍

Numpy (Numerical Python) 是一个开源的 Python 科学计算库,用于快速处理任意维度的数组。 Numpy 支持常见的数组和矩阵操作。

对于同样的数值计算任务,使用 Numpy 比直接使用 Python 要简洁的多。

Numpy 使用 ndarray 对象来处理多维数组,该对象是一个快速而灵活的大数据容器。

二、Ndarray 介绍

NumPy 提供了一个N维数组类型 ndarray ,它描述了相同类“items” 的集合。

要存储八个同学的成绩

用 ndarray 进行存储:

import numpy as np
score=np.array([[80, 89, 86, 67, 79] ,
[78, 97, 89, 67, 81],
[90, 94, 78, 67, 74] ,
[91, 91, 90, 67, 69] ,
[76, 87, 75, 67, 86],
[70, 79, 84, 67, 84] ,
[94, 92, 93, 67, 64],
[86, 85, 83, 67, 80]])
print(type(score),score)

返回结果:

<class 'numpy.ndarray'> [[80 89 86 67 79]
 [78 97 89 67 81]
 [90 94 78 67 74]
 [91 91 90 67 69]
 [76 87 75 67 86]
 [70 79 84 67 84]
 [94 92 93 67 64]
 [86 85 83 67 80]]

三、Ndarray 与 Python 原生 list 运算效率对比

在这里我们通过一段代码运行来体会到 ndarray 的好处

import random
import time
import numpy as np
a = []
for i in range(100000000):
    a.append(random.random())
%time sum1=sum(a)
b=np.array(a)
%time sum2=np.sum(b)

输出结果为:

CPU times: user 1.82 s, sys: 17.8 s, total: 19.6 s
Wall time: 57.9 s
CPU times: user 189 ms, sys: 606 ms, total: 794 ms
Wall time: 2.04 s

 

从中我们看到 ndarray 的计算速度要快很多,节约了时间(57.9s降低到了2.04s)。

机器学习的最大特点就是大量的数据运算,那么如果没有一个快速的解决方案,那可能现在 python 也在机器学习领域达不到好的效果。

Numpy 专门针对 ndarray 的操作和运算进行了设计,所以数组的存储效率和输入输出性能远优于 Python 中的嵌套列表,数组越大,Numpy 的优势就越明显。

四、Ndarray 的优势

1.储存风格

从图中我们可以看出 ndarray 在存储数据的时候,数据与数据的地址都是连续的,这样就给使得批量操作数组元素时速度更快。

这是因为 ndarray 中的所有元素的类型都是相同的,而 Python 列表中的元素类型是任意的,所以 ndarray 在存储元素时内存可以连续,而 python 原生 list 只能通过寻址方式找到下一个元素,这虽然也导致了在通用性能方面 Numpy 的 ndarray 不及 Python 原生list,但在科学计算中, Numpy 的 ndarray 就可以省掉很多循环语句,代码使用方面比 Python 原生 list 简单的多。

2.并行化运算

ndarray 支持并行化运算(向量化运算)

3.底层语言

Numpy 底层使用 C 语言编写,内部解除了 GIL(全局解释器锁),其对数组的操作速度不受 Python 解释器的限制,效率远高于纯 Python 代码。

五,numpy的属性和类型

ndarray 的属性

数组属性反映了数组本身固有的信息。

ndarray.shape 数组维度的元组

ndarray.ndim 数组维数

ndarray.size 数组中的元素数量

ndarray.itemsize 一个数组元素的长度(字节)

ndarray.dtype 数组元素的类型

a=np.array([[1, 2, 3],[4, 5, 6]],dtype=np.float32)
b=np.array([1,2,3,4])
c=np.array([[[1,2,3],[4,5,6,]],[[1,2,3],[4,5,6]]])
print(a.shape)
print(b.shape)
print(c.shape)

结果如下:

(2, 3)
(4,)
(2, 2, 3)

那么,现在的a,b,c数组分别是几维数组呢?有多少个中括号就是几维的数组哦,因此,a是二维数组,b是一维数组,c是三维数组。


       数组类型以及范围

np.bool 用一个字节存储的布尔类型(True 或 False) ‘b'

np.int8  
 一个字节大小,-128至127 'i'
np.int16  整数,-32768至32767 i2'
np.int32 整数,-231至232-1   ‘i4'
np.int64  整数,-263至263-1 i8’
np.uint8  无符号整数,0至255    'u'
np.uint16 无符号整数,0至65535 'u2'
np.uint32 无符号整数,0至2**32-1 'u4'
np.uint64  无符号整数,0至2**64-1 'u8'
np.float16 半精度浮点数:16位,正负号1位,指数5位,精度10位 ‘f2’
np.float32 单精度浮点数:32位,正负号1位,指数8位,精度23位  ‘f4’
np.float64  双精度浮点数:64位,正负号1位,指数11位,精度52位  ‘f8’
np.complex128

复数,分别用两个64位浮点数

表示实部和虚部

'c16'
np.object_  python 对象  ‘O’ 
np.string_   字符串 ’S’
np.unicode_  unicode 类型 ’U’

建立一个数组,名称为d,指定类型为int16:

d=np.array([1,2,3,32767],dtype=np.int16)
print(d.dtype)
print(d)

也可以这样指定类型:

d=np.array([1,2,3,32800],dtype="i2")
print(d.dtype)
print(d)

但32800已经超过int16的范围了,因此,结果是错误的哦,结果如下:

int16
[     1      2      3 -32736]

修改i2为i8就可以正常显示啦。

目录
相关文章
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
104 3
|
2月前
|
安全 关系型数据库 测试技术
学习Python Web开发的安全测试需要具备哪些知识?
学习Python Web开发的安全测试需要具备哪些知识?
41 4
|
1月前
|
Python 容器
Python学习的自我理解和想法(9)
这是我在B站跟随千锋教育学习Python的第9天,主要学习了赋值、浅拷贝和深拷贝的概念及其底层逻辑。由于开学时间紧张,内容较为简略,但希望能帮助理解这些重要概念。赋值是创建引用,浅拷贝创建新容器但元素仍引用原对象,深拷贝则创建完全独立的新对象。希望对大家有所帮助,欢迎讨论。
|
25天前
|
Python
Python学习的自我理解和想法(10)
这是我在千锋教育B站课程学习Python的第10天笔记,主要学习了函数的相关知识。内容包括函数的定义、组成、命名、参数分类(必须参数、关键字参数、默认参数、不定长参数)及调用注意事项。由于开学时间有限,记录较为简略,望谅解。通过学习,我理解了函数可以封装常用功能,简化代码并便于维护。若有不当之处,欢迎指正。
|
16天前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
1月前
|
存储 索引 Python
Python学习的自我理解和想法(6)
这是我在B站千锋教育学习Python的第6天笔记,主要学习了字典的使用方法,包括字典的基本概念、访问、修改、添加、删除元素,以及获取字典信息、遍历字典和合并字典等内容。开学后时间有限,内容较为简略,敬请谅解。
|
1月前
|
存储 程序员 Python
Python学习的自我理解和想法(2)
今日学习Python第二天,重点掌握字符串操作。内容涵盖字符串介绍、切片、长度统计、子串计数、大小写转换及查找位置等。通过B站黑马程序员课程跟随老师实践,非原创代码,旨在巩固基础知识与技能。
|
1月前
|
程序员 Python
Python学习的自我理解和想法(3)
这是学习Python第三天的内容总结,主要围绕字符串操作展开,包括字符串的提取、分割、合并、替换、判断、编码及格式化输出等,通过B站黑马程序员课程跟随老师实践,非原创代码。
|
1月前
|
Python
Python学习的自我理解和想法(7)
学的是b站的课程(千锋教育),跟老师写程序,不是自创的代码! 今天是学Python的第七天,学的内容是集合。开学了,时间不多,写得不多,见谅。
|
1月前
|
存储 安全 索引
Python学习的自我理解和想法(8)
这是我在B站千锋教育学习Python的第8天,主要内容是元组。元组是一种不可变的序列数据类型,用于存储一组有序的元素。本文介绍了元组的基本操作,包括创建、访问、合并、切片、遍历等,并总结了元组的主要特点,如不可变性、有序性和可作为字典的键。由于开学时间紧张,内容较为简略,望见谅。