Linux网络编程(多路IO复用poll)

简介: Linux网络编程(多路IO复用poll)

前言

上篇文章我们讲解了使用select进行IO复用,这篇文章我们来讲解使用poll函数来进行多路IO复用。

一、poll函数讲解

poll() 函数是在网络编程中常用的一个系统调用函数,用于监视多个文件描述符的状态,以确定是否有文件描述符准备好进行读取、写入或出现异常。

以下是 poll() 函数的基本用法:

#include <poll.h>
int poll(struct pollfd *fds, nfds_t nfds, int timeout);

fds 参数是一个指向 pollfd 结构体数组的指针,每个结构体描述了一个文件描述符及其关注的事件。

nfds 参数是 fds 数组中元素的数量。

timeout 参数是超时时间,以毫秒为单位。指定 timeout 的值可以控制 poll() 函数的阻塞行为。

pollfd 结构体的定义如下:

struct pollfd {
    int fd;       // 文件描述符
    short events; // 感兴趣的事件
    short revents; // 实际发生的事件
};

fd 是被监视的文件描述符。

events 是要监视的事件的掩码,可以是以下值之一或它们的组合:

POLLIN:有数据可读。

POLLOUT:可写入数据。

POLLERR:发生错误。

POLLHUP:连接关闭。

POLLNVAL:文件描述符非法。

revents 是 poll() 函数填充的实际发生的事件。

poll() 函数的返回值表示有几个文件描述符准备好了,即满足所关心的事件。返回 值的三种情况如下:

返回值大于 0:表示准备好的文件描述符的数量。

返回值等于 0:表示在指定的超时时间内没有文件描述符准备好。

返回值小于 0:表示执行发生错误。

使用 poll() 函数的步骤如下:

1.设置 pollfd 数组中每个文件描述符的 fd 和 events 字段。

2.调用 poll() 函数,并传递 pollfd 数组、元素数量和超时时间。

3.检查返回值,根据 revents 字段判断具体发生的事件。

二、使用poll函数完成并发服务器

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <poll.h>
#define MAX_CLIENT  1024//最大可连接客户端的数量
int main()
{
    int server = 0;
    struct sockaddr_in saddr = {0};
    int client = 0;
    struct sockaddr_in caddr = {0};
    socklen_t asize = 0;
    int len = 0;
    char buf[32] = {0};
    int maxfd;
    int ret = 0;
    int i = 0;
    server = socket(PF_INET, SOCK_STREAM, 0);
    if( server == -1 )
    {
        printf("server socket error\n");
        return -1;
    }
    saddr.sin_family = AF_INET;
    saddr.sin_addr.s_addr = htonl(INADDR_ANY);
    saddr.sin_port = htons(8888);
    if( bind(server, (struct sockaddr*)&saddr, sizeof(saddr)) == -1 )
    {
        printf("server bind error\n");
        return -1;
    }
    if( listen(server, 128) == -1 )
    {
        printf("server listen error\n");
        return -1;
    }
    printf("server start success\n");
  /*将fds中的fd全部置为-1*/
    struct pollfd fds[MAX_CLIENT];
    for(i = 0; i < MAX_CLIENT; i++)
    {
        fds[0].fd = -1;
    }
    /*将服务端套接字添加到fds数组中*/
    fds[0].fd = server;
    fds[0].events = POLLIN;
    while( 1 )
    {        
        ret = poll(fds, MAX_CLIENT, -1);
        if(ret < 0)
        {
            printf("poll err\n");
            return -1;
        }
        if(fds[0].revents & POLLIN)
        {
            /*有客户端连接上来了*/
            asize = sizeof(caddr);  
            client = accept(server, (struct sockaddr*)&caddr, &asize);
            printf("client is connect\n");
            /*将新连接添加到fds数组中*/
            for(i = 1; i < MAX_CLIENT; i++)
            {
                if(fds[i].fd == -1)
                {
                    fds[i].fd = client;
                    fds[i].events = POLLIN;
                    break;
                }
            }            
        }
        /*遍历现有连接进行读取和处理数据*/
        for(i = 1; i < MAX_CLIENT; i++)
        {            
            int clientfd = fds[i].fd;
            if(clientfd > 0 && (fds[i].revents & POLLIN))
            {
                printf("process data\n");
                len = read(clientfd, buf, 1024);
                if(len == 0)
                {
                    /*客户端断开连接,关闭客户端文件描述符*/
                    close(clientfd);
                    fds[i].fd = -1;
                    printf("client is disconnect\n");
                }
                else
                {
                    printf("read buf : %s\n", buf);
                    write(clientfd, buf, len);
                }
            }
        }
    }
    close(server);
    return 0;
}

三、poll的优点缺点

优点:

1.简单易用:相对于低级别的系统调用如 select,poll 提供了更简单的 API,更易于使用和理解。

2.没有文件描述符数量限制:poll 没有预定义的文件描述符数量限制,可以适应更大规模的并发连接。

3.支持文件描述符数组:相对于 select 的位图方式,poll 使用了文件描述符数组,可以更方便地进行管理和操作。

4.高效:poll 采用轮询的方式监视文件描述符的状态变化,只有活动的文件描述符才会返回,减少了无用的轮询过程,提高了效率。

5.支持非阻塞IO:与 select 类似,poll 也支持非阻塞IO模式,可以在等待期间继续处理其他任务。

缺点:

1.每次调用都需要遍历整个文件描述符数组:即使只有少数文件描述符活跃,poll 在每次调用时都需要遍历整个文件描述符数组,这会带来性能上的开销。

2.没有提供超时精度控制:poll 的超时参数是以毫秒为单位的,无法提供更高的精度,因此在需要更精确超时的情况下,不太适用。

3.不可移植性:poll 是一个相对较新的系统调用,不是所有的操作系统都提供该接口,因此在编写跨平台代码时,需要考虑兼容性。

4.没有对信号处理的支持:与 select 不同,poll 不提供对信号处理的支持,因此无法直接处理信号事件。

总结

本篇文章主要讲解到了poll函数的使用方法并且使用poll实现了一个并发服务器,这个大家可以结合上篇文章的select函数进行对比思考。


相关文章
|
1月前
|
网络协议 前端开发 Java
网络协议与IO模型
网络协议与IO模型
网络协议与IO模型
|
24天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
40 1
|
24天前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
208 2
|
1月前
|
开发者
什么是面向网络的IO模型?
【10月更文挑战第6天】什么是面向网络的IO模型?
22 3
|
1月前
|
数据挖掘 开发者
网络IO模型
【10月更文挑战第6天】网络IO模型
42 3
|
1月前
|
缓存 Java Linux
硬核图解网络IO模型!
硬核图解网络IO模型!
|
1月前
|
数据挖掘 开发者
网络IO模型如何选择?
网络IO模型如何选择?【10月更文挑战第5天】
20 2
|
23天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
32 0
|
1月前
|
Java Linux
【网络】高并发场景处理:线程池和IO多路复用
【网络】高并发场景处理:线程池和IO多路复用
47 2
|
4天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的知识,并提供一些实用的技巧和建议,帮助读者更好地保护自己的网络安全和信息安全。
下一篇
无影云桌面