【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)

本文涉及的产品
票据凭证识别,票据凭证识别 200次/月
通用文字识别,通用文字识别 200次/月
教育场景识别,教育场景识别 200次/月
简介: 【Keras计算机视觉OCR】文字识别算法中DenseNet、LSTM、CTC、Attention的讲解(图文解释 超详细)

觉得有帮助麻烦点赞关注收藏~~~

一、OCR文字识别的概念

利用计算机自动识别字符的技术,是模式识别应用的一个重要领域。人们在生产和生活中,要处理大量的文字、报表和文本。为了减轻人们的劳动,提高处理效率,从上世纪50年代起就开始探讨文字识别方法,并研制出光学字符识别器。

OCR(Optical Character Recognition)图像文字识别是人工智能的重要分支,赋予计算机人眼的功能,可以看图识字。如图6-1所示,图像文字识别系统流程一般分为图像采集、文字检测、文字识别及结果输出四个部分。

二、文字识别算法

卷积神经网络是图像识别的主要方法,也同样适用于字符的识别,但文本识别不同于其他的图像识别,文本行的字符间是一个序列,彼此之间也有一定关系,同一文本行上的不同字符可以互相利用上下文信息,因此可以采用处理序列的方法例如循环神经网络来表示,CNN和RNN两种网络相结合可以提高识别精度,CNN用来提取图像的深度特征,RNN用来对序列的特征进行识别,以符合文本序列的性质,从而形成统一的端到端可训练模型

下面将介绍DenseNet+LSTM+CTC的结合方式 将特征提取 序列预测和解码集成到一个统一的网络模型中

1:基于DenseNet网络模型的序列特征提取

DenseNet是一种有效的图像识别算法,该网络的优点在于减轻了深层网络梯度消失问题,增强了特征图的传播利用率,减少了模型参数量,在ResNet的基础上进一步加强了特征图之间的连接,构造了一种具有密集连接方式的卷积神经网络

DenseNet网络模型的核心组成部分是密集连接模块,这个模块中任意两层之间均直接的连接,即网络中的第一层、第二层 第L-1层的输出都会作为第L层的输入,同时第L层的特征图也会直接传递给后面所有层作为输入

 

2:基于LSTM结构的上下文序列特征提取

文本行是一个序列,含有丰富的上下文信息,同一文本行中的不同字符可以互相利用上下文信息,这对于字符的识别具有重要的影响,一些模糊的字符在观察其上下文时更容易区分,在卷积网络之后,构建了一个循环网络,用于提取文本序列的上下文序列特征

双向LSTM能在访问之前信息的同时,访问字符之后的信息,故能从正反两个方向提取文本行中的语义信息,有助于文本行识别任务,因此 双向LSTM可以同时处理上文和下文信息来提取上下文序列特征

字符序列的解码方式

在文本识别网络模型中,LSTM输出的序列中的字符要与标签中字符的位置一一对应,若使用softmax函数作为损失函数进行训练,训练网络参数时需要在图像上标注出每个的位置信息,使用手工标注对其样本工作量非常大,所以需要解码使字符位置一一对应 下面介绍两种常用的机制

1:基于CTC解码机制

CTC机制常用于文字识别系统,解决序列标注问题中输入标签与输出标签的对齐问题,通过映射韩叔叔将其转换为预测序列,无序数据对齐处理,减少了工作量,被广泛用于图像文本识别的损失函数计算,多用于网络参数的优化

解码是模型在做预测的过程中将LSTM输出的预测序列通过分类器转换为标签序列的过程,解码过程中的分类方式为最优路径编码,输出计算概率最大的一条路径作为最终的预测序列,即在每个时间点输出概率最大的字符

 

2:Attention模型注意力机制解码方式

注意力机制被广泛用于序列处理Seq2Seq任务中,注意力模型借鉴了人类视觉的选择性注意力机制,其核心目标是从众多信息中选出对当前任务目标来说重要的信息,忽略其他不重要的信息

对含有文本的图片而言,文本识别输出的结果的顺序取决于文本行中字符的前后位置信息,引入注意力机制可以起到定位的作用,从而突出字符的位置信息,解决序列对齐问题,因此不需要标注文本的位置

Attention模型的原理是计算当前输入序列与输出序列的匹配程度,在产生每一个输出时,会充分利用输入序列上下文信息,对同一序列中的不同字符赋予不同的权重。

创作不易 觉得有帮助请点赞关注收藏~~~

相关文章
|
1月前
|
机器学习/深度学习 文字识别 Linux
Umi-OCR_文字识别工具 免安装使用教程(附下载安装包)!永久免费,开源离线OCR识别软件下载
Umi-OCR是一款开源免费、支持离线运行的高精度OCR文字识别工具,基于深度学习技术,可快速识别中文、英文、日文等多种语言。无需联网,保护隐私,适用于Windows和Linux系统,解压即用,操作简便,是处理图片转文本的理想选择。
838 7
|
5月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
2月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
|
6月前
|
机器学习/深度学习 文字识别 自然语言处理
OCR技术:解锁文字识别的无限可能
OCR(光学字符识别)技术是数字化浪潮中的关键工具,可将纸质文档、手写笔记或复杂背景下的文字图像转化为可编辑文本。本文从图像采集、预处理、字符识别到文本校正,全面解析OCR技术的原理,并探讨其在智能办公、智慧交通、便捷生活等领域的广泛应用。未来,OCR将与自然语言处理、计算机视觉等技术深度融合,推动智能化和综合化发展。通过开放生态系统和政策支持,开发者可探索更多创新场景,如古籍数字化、盲人阅读等,为社会带来更多价值。
1523 57
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
278 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
5月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
8月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。

热门文章

最新文章