c语言进阶部分详解(详细解析动态内存管理)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: c语言进阶部分详解(详细解析动态内存管理)

今天来介绍动态内存管理 的相关内容:


一.为什么存在动态内存分配

我们熟悉的内存开辟方法:

int a = 20;//在栈空间上开辟四个字节的空间
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间

上述的开辟空间的方式有两个特点

1. 空间开辟大小是固定

2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配


但是,有时候我们需要的空间大小在程序运行的时候才能知道, 那数组的编译时开辟空间的方式就不能满足了。

这时候就只能试试动态存开辟了

各种变量存储位置:


二.动态内存函数的介绍

2.1 malloc( )函数

malloc函数是C语言中的一个动态内存分配函数,用于在程序运行时动态地分配内存空间。它的作用是在堆区中申请一块指定大小的内存空间,并返回该内存块的首地址。

malloc函数的原型为:

#include<stdlib.h>

void *malloc(size_t size)

其中,size_t是一个无符号整数类型,用于表示要分配的内存空间的大小(单位为字节)。malloc函数返回一个void类型的指针,指向分配的内存空间的起始地址。如果分配失败,则返回NULL

  • 如果开辟成功,则返回一个指向开辟好空间的指针
  • 如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查
  • 返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己来决定
  • 如果参数 size 0malloc的行为是标准是未定义的,取决于编译器

2.2free( )函数

free函数是C语言中的一个内存释放函数,用于释放之前使用malloc、calloc或realloc函数分配的内存空间。它的作用是将不再使用的内存空间返回给系统,以便其他程序或操作系统可以重新利用该内存

free函数的原型为:

#include<stdlib.h>

void free(void *ptr);

ptr是一个指向要释放的内存空间的指针。该指针必须是之前使用malloc、calloc或realloc函数返回的指针,或者是NULL指针。如果ptr是NULL指针,则free函数不会进行任何操作

  • 如果参数 ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的
  • 如果参数 ptr NULL指针,则函数什么事都不做

示例:

int main()
{
  int* arr = (int*)malloc(sizeof(int) * 10);//使用malloc函数进行动态内存开辟
  //因为返回值是void* 所以要强转一下
  if (arr == NULL)
  {
    perror("malloc");//如果开辟失败就进行说明
  }
  for (int i = 0; i < 10; i++)
  {
    arr[i] = i;
  }
  free(arr);//在程序最后要结束时主动进行释放
    arr=NULL;
  return 0;
}


  • 我们用free是进行主动释放开辟的动态内存
  • 程序退出后,操作系统会自动回收的,这是被动(尽量避免,还是要free)

2.3calloc()函数

calloc函数是C语言中的一个内存分配函数,用于在堆上分配一块指定大小的内存空间,并将该空间的每个字节初始化为0

calloc函数的原型为:

#include<stdlib.h>

void *calloc(size_t num, size_t size);

其中,num表示要分配的元素个数,size表示每个元素的大小。calloc函数会返回一个指向分配内存的指针,如果分配失败则返回NULL

  • 函数的功能是为 num 个大小为 size 的元素开辟一块空间,并且把空间的每个字节初始化为0
  • 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全0
int main()
{
  int* p = (int*)calloc(10, sizeof(int));
  if (NULL != p)
  {
    perror("calloc");
  }
//使用。。。。
  free(p);
  p = NULL;
  return 0;
}

大家可以看到内存情况:

2.4realloc()函数

有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时

候内存,我们一定会对内存的大小做灵活的调整。那 realloc 函数就可以做到对动态开辟内存大小

的调整

realloc函数的原型为:

#include<stdlib.h>

void *realloc(void *ptr, size_t size);

其中,ptr是之前分配的内存指针,size是重新分配的内存大小。realloc函数会尝试将ptr指向的内存空间重新分配为size大小的内存空间,并返回一个指向重新分配后的内存空间的指针

  1. 如果ptr为NULL,那么realloc的行为就相当于malloc,它会分配一个大小为size的新内存空间,并返回指向该内存空间的指针。
  2. 如果size为0,那么realloc的行为就相当于free,它会释放ptr指向的内存空间,并返回NULL。
  3. 如果ptr不为NULL且size不为0,那么realloc会尝试重新分配ptr指向的内存空间。如果成功,会返回指向重新分配后的内存空间的指针;如果失败,会返回NULL,并且原来的内存空间仍然有效

扩展空间情况也有两种:

  • 原有空间之后有足够大的空间:要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化
  • 原有空间之后有不够大:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址
int main()
{
  int* p = (int*)calloc(10, sizeof(int));
  if (NULL != p)
  {
    perror("calloc");
  }
  for (int i = 0; i < 10; i++)
  {
    p[i] = i;
  }
//使用。。。。
  int* pa = NULL;
  pa = realloc(p, 1000);
  if (p != NULL)
  {
    p = pa;
  }
  free(p);
  p = NULL;
  return 0;
}

三.常见的动态内存错误

3.1NULL指针的解引用操作

3.2对动态开辟空间的越界访问

void test2()
{
 int *p = (int *)malloc(10*sizeof(int));
 if(NULL == p)
 {
 exit(EXIT_FAILURE);
 }
 for(iny i=0; i<=10; i++)
 {
 *(p+i) = i;//当i是10的时候越界访问
 }
 free(p);
}


3.3对非动态开辟内存使用free释放

void test3()
{
 int a = 10;
 int *p = &a;
 free(p);//这也是不可以的
}


3.4使用free释放一块动态开辟内存的一部分

void test4()
{
 int *p = (int *)malloc(100);
 p++;   //p不再指向动态内存的起始位置
 free(p);
}


3.5对同一块动态内存多次释放

void test5()
{
 int *p = (int *)malloc(100);
 free(p);
 free(p);//重复释放
}


3.6动态开辟内存忘记释放(内存泄漏)

void test()
{
 int *p = (int *)malloc(100);
 if(NULL != p)
 {
 *p = 20;
 }
}
int main()
{
 test();//调用函数后,p的那片空间没办法用了,在函数结束后,函数内动态分配的内存空间不会自动销毁
 while(1);
}


在函数结束后,函数内动态分配的内存空间不会自动销毁。这是因为动态分配的内存空间是在堆上分配的,而不是在函数的栈帧上。栈帧上的局部变量在函数结束时会自动销毁,但堆上分配的内存空间需要手动释放



四.C/C++程序的内存开辟

C/C++程序内存分配的几个区域:

1. 栈区( stack) :在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执结

束时这些 存储单元自动被释放 。栈内存分配运算内置于处理器的指令集中,效率很高,但是

分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返

回地址等2. 堆区( heap ):一般由 程序员分配释放 , 若程序员不释放,程序结束时可能由 OS 回收 。分配方式类似于链表

3. 数据段(静态区)( static )存放全局变量、静态数据。 程序结束后由系统释放 。

4. 代码段:存放函数体(类成员函数和全局函数)的二进制代码


好啦,这次的内容就先到这里的,下一次会讲解一些关于动态内存的经典的题目和柔性数组相关的知识。


目录
相关文章
|
2月前
|
安全 Java 开发者
Java 内存模型解析与实践
在Java的世界中,理解内存模型对于编写高效、线程安全的代码至关重要。本文将深入探讨Java内存模型的核心概念,并通过实例分析其对并发编程的影响,旨在为读者提供一套实用的策略和思考方式来优化多线程应用的性能与安全性。
51 0
|
7天前
|
存储 算法 Java
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
本文介绍了 JVM 的内存区域划分、类加载过程及垃圾回收机制。内存区域包括程序计数器、堆、栈和元数据区,每个区域存储不同类型的数据。类加载过程涉及加载、验证、准备、解析和初始化五个步骤。垃圾回收机制主要在堆内存进行,通过可达性分析识别垃圾对象,并采用标记-清除、复制和标记-整理等算法进行回收。此外,还介绍了 CMS 和 G1 等垃圾回收器的特点。
20 0
深入解析 Java 虚拟机:内存区域、类加载与垃圾回收机制
|
21天前
|
存储 监控 算法
Java中的内存管理与垃圾回收机制解析
本文深入探讨了Java编程语言中的内存管理策略和垃圾回收机制。首先介绍了Java内存模型的基本概念,包括堆、栈以及方法区的划分和各自的功能。进一步详细阐述了垃圾回收的基本原理、常见算法(如标记-清除、复制、标记-整理等),以及如何通过JVM参数调优垃圾回收器的性能。此外,还讨论了Java 9引入的接口变化对垃圾回收的影响,以及如何通过Shenandoah等现代垃圾回收器提升应用性能。最后,提供了一些编写高效Java代码的实践建议,帮助开发者更好地理解和管理Java应用的内存使用。
|
6天前
|
存储 缓存 NoSQL
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
Redis 过期删除策略与内存淘汰策略的区别及常用命令解析
13 0
|
22天前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
43 0
|
2月前
|
算法 程序员
理解操作系统内存管理:页面置换算法全解析
大家好,我是小米,热爱分享技术的大哥哥!今天聊的是操作系统中的页面置换算法。它解决的是内存满载时,如何选择合适的页面移出以腾出空间的问题。主要有三种算法:FIFO(先进先出),简单但性能不佳;LRU(最近最久未使用),考虑时间局部性,性能较好但实现较复杂;OPT(最佳置换),理论上最优但无法实际应用。这些算法各有千秋,在实际应用中需根据场景选择最合适的方案。希望这能帮大家更好地理解内存管理的核心机制!
86 2
|
2月前
|
程序员 C语言
位操作在C语言中的解析与应用
位操作在C语言中的解析与应用
75 0
|
3月前
|
SQL 数据采集 数据管理
SQL数据:探索、管理与优化的全面解析
在信息化时代,数据成为企业核心资产。本文探讨SQL在数据探索、管理与优化中的作用:使用DESC、SELECT了解数据集;评估数据质量;发现数据特征。管理方面,涵盖数据存储、检索、更新与维护。优化则涉及索引、查询及数据库设计,确保高性能和效率。掌握SQL能有效挖掘数据价值,支持企业决策与创新。
90 1
|
3月前
|
供应链 监控 调度
ERP系统中的销售订单管理与订单跟踪解析
【7月更文挑战第25天】 ERP系统中的销售订单管理与订单跟踪解析
166 2
|
3月前
|
监控 数据挖掘 数据安全/隐私保护
ERP系统中的客户投诉管理与解决方案解析
【7月更文挑战第25天】 ERP系统中的客户投诉管理与解决方案解析
168 1

推荐镜像

更多
下一篇
无影云桌面