在Flink CDC运行过程中出现重复数据的情况

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 在Flink CDC运行过程中出现重复数据的情况

在Flink CDC运行过程中出现重复数据的情况,可能是由于多个Flink CDC Slave使用相同的server_uuid或server_id连接到同一个Flink CDC Master导致的。在Flink CDC中,每个Slave都应具有唯一的server_uuid和server_id,否则会出现连接冲突的错误。

另外,Flink CDC Master和Slave之间的网络连接中断或超时也可能导致Slave断开连接并重新连接到Master,从而导致连接冲突的错误。

解决方法:

  1. 确保每个Flink CDC Slave都具有唯一的server_uuid和server_id。您可以在启动Flink CDC Slave时使用--server.uuid和--server.id参数来指定server_uuid和server_id。
  2. 检查Flink CDC Master和Slave之间的网络连接是否稳定。您可以检查网络连接的带宽、延迟等指标,以确定是否存在网络连接问题。另外,您可以尝试增加Flink CDC Master和Slave的网络连接超时时间,以避免连接中断或超时。
  3. 检查Flink CDC Master的日志文件,查看是否有其他错误信息。您可以在Flink CDC Master的配置文件中设置日志级别和日志输出路径,以方便查看日志信息。

总的来说,要确保Flink CDC运行过程中的数据一致性,需要确保每个Slave具有唯一的server_uuid和server_id,并检查Master和Slave之间的网络连接是否稳定。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
7月前
|
监控 关系型数据库 MySQL
Flink CDC产品常见问题之flink-cdc任务抓取全量的mysql数据不生效如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
7月前
|
消息中间件 关系型数据库 MySQL
Flink CDC 数据源问题之数据变动如何解决
Flink CDC数据源指的是使用Apache Flink的CDC特性来连接并捕获外部数据库变更数据的数据源;本合集将介绍如何配置和管理Flink CDC数据源,以及解决数据源连接和同步过程中遇到的问题。
|
7月前
|
消息中间件 关系型数据库 Kafka
flink cdc 数据问题之数据丢失如何解决
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
7月前
|
关系型数据库 MySQL Java
flink cdc 同步问题之多表数据如何同步
Flink CDC(Change Data Capture)是一个基于Apache Flink的实时数据变更捕获库,用于实现数据库的实时同步和变更流的处理;在本汇总中,我们组织了关于Flink CDC产品在实践中用户经常提出的问题及其解答,目的是辅助用户更好地理解和应用这一技术,优化实时数据处理流程。
|
7月前
|
存储 Oracle 关系型数据库
Flink CDC 数据源问题之连接释放冲突如何解决
Flink CDC数据源指的是使用Apache Flink的CDC特性来连接并捕获外部数据库变更数据的数据源;本合集将介绍如何配置和管理Flink CDC数据源,以及解决数据源连接和同步过程中遇到的问题。
180 0
|
1月前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
95 9
|
4月前
|
SQL 数据库 流计算
Flink CDC数据读取问题之一致性如何解决
Flink CDC 使用Change Data Capture (CDC)技术从数据库捕获变更事件,并利用Flink的流处理能力确保数据读取一致性。相较于传统工具,它具备全增量一体化数据集成能力,满足实时性需求。在实践中解决了高效数据同步、稳定同步大量表数据等问题。应用场景包括实时数据同步、实时数据集成等。快速上手需学习基本概念与实践操作。未来发展方向包括提升效率与稳定性,并依据用户需求持续优化。
151 1
|
7月前
|
SQL Java 关系型数据库
实时计算 Flink版操作报错合集之通过flink sql形式同步数据到hudi中,本地启动mian方法报错如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
221 8
|
7月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之在使用Flink SQL向ClickHouse写入数据的过程中出现丢数据或重复数据的情况如何解决
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
373 1
|
7月前
|
SQL Oracle 关系型数据库
Flink CDC数据同步问题之同步数据减少如何解决
Flink CDC数据同步是指利用Flink CDC实现不同数据源之间的实时数据同步任务;本合集旨在提供Flink CDC数据同步的操作指南、性能优化建议和常见问题处理,助力用户高效实施数据同步。