垃圾收集算法是内存回收的方法论,垃圾收集器是内存回收的具体实现。Java虚拟机规范中对垃圾收集器应该如何事先并没有任何规定,故而不同厂商、不同版本的虚拟机所提供的垃圾收集器可能会有很大差别。本文分享的收集器是基于JDK1.7之后的HotSpot虚拟机,这个虚拟机所包含的所有收集器如图所示:
连线表示两个收集器可以搭配使用,虚拟机所在的区域表示它是属于新生代还是老年代收集器(上面是新生代,下面是老年代)。
【1】Serial收集器
Serial是一个最基本、发展历史最悠久的收集器,在JDK1.3.1之前是虚拟机新生代收集的唯一选择。该收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。
“Stop The World”实际上是由虚拟机在后台自动发起和自动完成的,在用户不可见的情况下把用户正常工作的线程全部停掉,这对很多应用来说是难以接受的。
从JDK1.3开始一直到现在的JDK1.11,HotSpot虚拟机开发团队为消除或者减少工作线程因内存回收而导致停顿的努力一直在进行着,从Serial收集器到Parallel收集器,再到Concurrent Mark Sweep(CMS)乃至GC收集器的最前沿成功Garbage First(G1)收集器,用户线程的停顿时间在不断缩短,但是仍然没有办法完全消除。
但是实际上到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。在用户的桌面应用场景中,分配给虚拟机管理的内存一般来说不会很大,收集及时兆甚至一两百兆的新生代(仅仅是新生代使用的内存,桌面应用基本上不会再大了),停顿时间完全可以控制在几十毫秒最多一百多毫秒以内,只要不是频繁发生,这点停顿是可以接受的。所以,Serial收集器对于运行在Client模式下的虚拟机来说是一个很好的选择。
Serial/Serial Old收集器运行示意图如下:
【2】ParNew收集器
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数(例如:-XX:SurvivorRatio -XX:PretenureSizeThreshold -XX:HandlePromotionFailure等)、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样。
ParNew/Serial Old收集器运行示意图:
ParNew除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它确实许多运行在Server模式下的虚拟机中首选的新生代收集器,其中一个与性能无关但很重要的原因是,处理Serial收集器外,目前只有它能与CMS收集器配合工作。
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分比地保证可以超越Serial收集器。当然,随着可以使用的CPU数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,在CPU非常多(譬如32个)的环境下,可以使用-XX:ParallelGCThreads参数来限制垃圾收集的线程数。
两个概念
并行(Parallel):指多条垃圾收集线程并行工作,但是此时用户线程仍然处于等待状态。
并发(Concurrent):指用户线程与垃圾收集线程同时运行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。
【3】Parallel Scavenge收集器
① 吞吐量优先收集器
Parallel Scavenge收集器与上面两个一样都是新生代收集器,同样是并行的多线程收集器,使用复制算法。其特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge 收集器的模板则是达到一个可控制的吞吐量(Throughput)。
所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
② 两个参数
Parallel Scavenge 收集器提供了两个参数用于精确控制吞吐量,分别是控制最大垃圾收集停顿时间的-XX:MaxGCPauseMillis参数以及直接设置吞吐量大小的-XX:GCTimeRatio参数。
MaxGCPauseMillis参数允许设置的值是一个大于0的毫秒数,收集器尽可能地保证内存回收花费的时间不超过设定值。不过不要认为如果把这个参数的值设置得稍小一点就能使得系统的垃圾收集速度变得更快。GC停顿时间缩短是以牺牲吞吐量和新生代空间来换取的:系统把新生代调小一点,收集300MB新生代肯定比收集500MB快吧,这也直接导致垃圾收集发生得更频繁一些。原来10秒收集一次、每次停顿100毫秒,现在变成5秒收集一次、每次停顿70毫秒。停顿时间的确在下降,但吞吐量也降下来了。
GCTimeRatio参数的值应当是一个大于0且小于100的整数,也就是垃圾收集时间占总时间的比率,相当于是吞吐量的倒数。如果把此参数设置为19,那允许的最大GC时间就占总时间的5%(即1/(1+19)),默认值为99,就是允许最大1%(即1/(1+99))的垃圾收集时间。
③ 自适应调节策略
由于与吞吐量关系密切,Parallel Scavenge收集器也经常被称为"吞吐量优先"收集器。除上述两个参数之外,Parallel Scavenge收集器还有一个参数-XX:+UseAdaptiveSizePolicy值得关注。这是一个开关参数,当这个参数打开之后,就不需要手工指定新生代的大小(-Xmn)、Eden与Survivor区的比例(-XX:SurvivorRatio)、晋升老年代对象大小(-XX:PretenureSizeThreshold)等细节参数了,虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应的调节策略。自适应调节策略也是Parallel Scavenge收集器与ParNew收集器的一个重要区别。
Parallel Scavenge/Serial Old收集器运行示意图:
需要说明的是,Parallel Scavenge收集器架构中本身有PS MarkSweep收集器来进行老年代收集,并非直接使用了Serial Old收集器。但是这个PS MarkSweep 收集器与Serial Old的实现非常接近,所以在官网的许多资料中都是直接以Serial Old代替PS MarkSweep进行讲解。
【4】Serial Old收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它还有两大用途:一种用途是在JDK1.5以及之前的版本中与Parallel Scavenge收集器搭配使用。另一种用途就是作为CMS收集器的后备预案,在并发手机发送Concurrent Mode Failure时使用。
Serial/Serial Old收集器运行示意图如下:
【5】Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK1.6中才开始提供的,在此之前新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择(Parallel Scavenge收集器无法与CMS收集器配合工作)。由于老年代Serial Old收集器在服务端应用性能上的拖累,使用了ParallelScavenge收集器也未必能在整体应用上获得吞吐量最大化的效果。由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至不一定有ParNew+CMS的组合给了。
直到Parallel Old收集器出现后,“吞吐量优先”收集器终于有了比较名副其实的应用组合。在注重吞吐量以及CPU资源敏感的场合,都可以优先考虑Parallel Scavenge+Parallel Old收集器。
Parallel Scavenge/Parallel Old收集器的工作过程如下图所示:
【6】CMS收集器
CMS收集器-Mostly-Concurrent收集器,也称并发标记清除收集器(Concurrent Mark-Sweep GC)。其是一种以获取最短回收停顿时间为目标的收集器。它管理新生代的方式与Parallel收集器和Serial收集器相同,而在老年代则是尽可能得并发执行,每个垃圾收集器周期只有2次短停顿。
CMS的初衷和目的:为了消除Throught收集器(Parallel Scavenge 吞吐量优先收集器)和Serial收集器在Full GC周期中的长时间停顿。
CMS的适用场景:如果你的应用需要更快的响应,不希望有长时间的停顿,同时你的CPU资源也比较丰富,就适合适用CMS收集器。
从名字(包含"Mark Sweep")上就可以看出,CMS收集器是基于“标记-清除”算法实现的,它的运作过程更复杂一些,整个过程分为四个步骤:
初始标记(CMS initial mark)
并发标记(CMS concurrent mark)
重新标记(CMS remark)
并发清除(CMS concurrent sweep)
其中,初始标记、重新标记这两个步骤仍然需要“Stop the World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC Roots Tracing的过程。而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录。这个阶段的停顿实际一般会比初始标记阶段稍长一些,但远比并发标记时间短。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作。所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
Concurrent Mark Sweep收集器运行示意图如下:
【7】G1(Garbage-First)收集器
① G1的四个特点
G1是一款面向服务端应用的垃圾收集器,与其他GC收集器相比,G1具备如下特点。
并行与并发
G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU来缩短Stop-The-World停顿的世界,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
分代收集
与其他收集器一样,分代概念在G1中依然得到保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式取处理新创举的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
空间整合
与CMS的“标记-清除”算法不同,G1从整体上来看是基于“标记-整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的。但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前出发下一次GC。
可预测的停顿
这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点。但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。
② Region
在G1之前的其他收集器进行收集的范围都是整个新生代或者老年代,而G1不再是这样。使用G1收集器时,Java堆的内存布局就与其他收集器有很大差别,它将整个Java堆划分为多个大小相等的独立区域(Region),虽然还保留有新生代和老年代的概念,但新生代和老年代不再是物理隔离的,它们都是一部分Region(不需要连续)的集合。
G1收集器之所以能建立可预测的停顿时间模型,是因为它可以有计划地避免在整个Java堆中进行全区域的垃圾收集。G1跟踪各个Region里面的垃圾堆积的价值大小(回收所获得的空间大小以及回收所需时间的经验值),在后台维护一个优先列表,每次根据允许的收集时间,优先回收价值最大的Region(这也就是Grabge-First名称的来由)。这种使用Region划分内存空间以及有优先级的区域回收方式,保证了G1收集器在有限的时间内可以获取尽可能高的收集效率。
③ 避免全堆扫描
在G1收集器中,Region之间的对象引用以及其他收集器中的新生代与老年代之间的对象引用,虚拟机都是使用Remembered Set来避免全堆扫描的。G1中每个Region都有一个与之对应的Remembered Set,虚拟机发现程序在对Reference类型的数据进行写操作时,会产生一个Write Barrier暂时中断写操作,检查Reference引用的对象是否处于不同的Region之中(在分代的例子中就是检查是否老年代中的对象引用了新生代的对象)。如果是,便通过CardTable把相关引用信息记录到被引用对象所属的Region的Remembered Set之中。当进行内存回收时,在GC根结点的枚举范围中加入Remembered Set即可保证不对全堆扫描也不会有遗漏。
④ 运作步骤
如果不计算维护Remembered Set的操作,G1收集器的运作大致可分为以下几个步骤:
初始标记(Initial Marking);
并发标记(Concurrent Marking);
最终标记(Final Marking);
筛选回收(Live Data Counting and Evacuation);
G1的前几个步骤和CMS有很多相似之处。
初始标记阶段仅仅是标记一下GC Roots能直接关联到的对象,并且修改TAMS(Next Top at Mark Start)的值,让下一阶段用户程序并发执行时,能在正确可用的Region中创建新对象,该阶段需要停顿线程,但耗时很短。
并发标记阶段是从GC Roots开始对堆中对象进行可达性分析,找出存活的对象。这阶段耗时较长,但可与用户程序并发执行。
最终标记阶段则是为了修改在并发标记期间因用户程序继续运作而导致标记产生变动的那一部分标记记录,虚拟机将这段时间对象变化记录在线程Remembered Set Logs里面。最终标记阶段需要把Remembered Set Logs的数据合并到Remembered Set中,这阶段需要停顿线程,但是可并行执行。
最后在筛选回收阶段首先对各个Region的回收价值和成本进行排序,根据用户所期望的GC停顿时间来制定回收计划。从Sun公司透露出来的信息来看,这个阶段其实也可以做到与用户陈旭一起并发执行,但是因为只回收一部分Region,时间是用户可控制的,而且停顿用户线程将大幅提高收集效率。
G1收集器的运作步骤示意图(只有并发标记不需要Stop The World):