软件测试/测试开发|Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

本文涉及的产品
可观测可视化 Grafana 版,10个用户账号 1个月
简介: 软件测试/测试开发|Docker+Jmeter+InfluxDB+Grafana 搭建性能监控平台

image.png

为什么要搭建性能监控平台?

1.1 需求背景

在用 Jmeter 获取性能测试结果的时候, Jmeter 本身带有聚合报告如下图所示:

image.png

这个报告有几个很明显的缺点:

  • 只能自己看,无法实时共享;

  • 报告信息的展示比较简陋单一,不直观;

1.2 需求方案

为了解决上述问题,必须要请出了 InfluxDB + Grafana

  • InfluxDB :持续型数据库,有时间戳组件,以时间的形式去存储数据

  • Grafana :一款采用 Go 语言编写的开源应用,主要用于大规模指标数据的可视化展现,是网络架构和应用分析中最流行的时序数据展示工具

简单总结起来就是:
Jmeter 的数据导入 InfluxDB ,再用 GrafanaInfluxDB 中获取数据并以特定的模板进行展示

本次实践是用目前较为流行的 Docker 的方式进行部署,也推荐使用,作为一名普通的测试,会了点 Docker 的皮毛就已经爱不释手了,对于头疼的环境问题真的太好用了,强烈推荐。

性能监控平台部署实践

2.1 Docker环境

本文的重点并不是介绍 Docker,所以不了解的小伙伴需要自己去学习一下基本的安装和操作,可参考之前发送的 Docker 文章

2.2 InfluxDB部署

1)首先去下载InfluxDB的镜像,下载很简单,直接pull就好,默认为下载最新的镜像:

$ docker pull influxdb

目前最新的influxdb不支持网页端的查看,仅可用命令行的形式,不过没有什么影响,如果真的想要有网页端的显示的话可以尝试下载较前的镜像:tutum/influxdb

2)启动一个容器,并将端口 80838086 映射出来,如果用的是 tutum/influxdb 镜像,在访问8083端口时就可以看到网页端的展示,我这里用的是最新的,所以就没有啦:

$ docker run -d --name jmeter-influx -p 8083:8083 -p 8086:8086 influxdb

3)进入容器内部,创建名为jmeter的数据库:

进入 jmeter-influx 容器

$ docker exec -it jmeter-influx bash
root@517f57017d99:/#

进入 influxcreate database jmeter 创建名为 jmeter 的数据库, show databases 命令查看数据库创建成功

root@517f57017d99:/# influx
Connected to http://localhost:8086 version 1.7.10
InfluxDB shell version: 1.7.10
> create database jmeter
> show databases
name: databases
name
----
_internal
jmeter

4)使用 J meter 库, select 查看数据,这个时候应该是没有数据的:

$ > use jmeter
Using database jmeter
> select * from jmeter
>

2.3 Jmeter脚本设置

这里需要创建一个登录注册场景的 Jmeter 脚本,往期文章有发布,本次就以此来进行测试结果演示。具体可参考之前发送的公众号文章。文章末尾的「往期回顾」第二篇文章即可阅读。

1)想要将 jmeter 的测试数据导入 influxDB ,就需要在 Jmeter 中使用 Backend Listener 配置

image.png

先看一下配置好的 Backend Listener

image.png

2)主要配置说明:
implementation 选择 influxdb 所对应的:

image.png

  • influxdbUrl:需要改为自己 influxdb 的部署 ip 和映射端口,我这里是部署在本地,所以就是 localhost ,端口是容器启动时映射的 8086 端口, db 后面跟的是刚才创建的数据库名称

  • application:可根据需要自由定义,只是注意后面在 grafana 中选对即可

  • measurement:表名,默认是 jmeter ,也可以自定义

  • summaryOnly:选择 true 的话就只有总体的数据, false 会将每个 transaction 都分别记录

3)运行验证

运行 Jmeter 脚本,然后再次在 influxdb 中查看数据,发现类似下面的数据说明输入导入成功:

image.png

2.4、Grafana部署

1)首先我们需要下载grafana的镜像:

$ docker pull grafana/grafana

2)启动一个grafana容器,将3000端口映射出来:

$ docker run -d --name grafana -p 3000:3000 grafana/grafana

3)网页端访问locahost:3000验证部署成功

image.png

4)选择添加数据源

image.png

5)找到并选择 influxdb :

image.png

6)配置数据源

image.png

数据源创建成功时会有绿色的提示:

image.png

7)导入模板

image.png

模板导入分别有以下3种方式:

  • 直接输入模板id号
  • 直接上传模板json文件
  • 直接输入模板json内容

8)下载模板,在grafana的官网下载我们需要的展示模板

https://grafana.com/grafana/dashboards?dataSource=influxdb&search=jmeter

image.png

下面这两个是我尝试过的模板:

image.png

9)导入模板,我这里选择的是导入json文件的方式,导入后如下,配置好模板名称和对应的数据源,然后 import 即可

image.png

10)展示设置,首先选择我们创建的application

image.png

注意: 如果我们修改过表名,也就是在jmeter的Backend Listener的measurement配置(默认为jmeter),这个时候就需要去设置中进行修改(我这里使用的就是默认的,所以无需修改):

image.png

效果展示及推荐学习

经过一系列的奋斗之后,该到了我们检验成果的时候了。使用 Docker + JMeter + InfluxDB + Grafana 到底可以搭建怎样的性能监控平台呢?相比较 JMeter 自带的监控平台,我们搭建的性能监控平台究竟有什么优势呢?接下来就是展示成果的时候啦!

image.png

image.png

Appium 官方说明文档:
http://appium.io/docs/en/writing-running-appium/finding-elements/
http://appium.io/docs/en/commands/element/find-elements/

Uiautomator2 源码路径:

https://github.com/appium/appium-uiautomator2-server/blob/master/app/src/main/java/io/appium/uiautomator2/handler/FindElement.java

相关文章
|
1月前
|
搜索推荐 测试技术 数据安全/隐私保护
【Docker项目实战】Docker环境下部署NeonLink书签平台
【2月更文挑战第17天】Docker环境下部署NeonLink书签平台
77 0
|
4天前
|
时序数据库 Docker 容器
Docker安装InfluxDB
Docker安装InfluxDB
8 0
|
10天前
|
测试技术 Linux 数据安全/隐私保护
【Docker项目实战】使用Docker部署PicoShare共享文件平台
【4月更文挑战第5天】使用Docker部署PicoShare共享文件平台
45 4
|
11天前
|
jenkins 测试技术 持续交付
软件测试|docker搭建Jenkins+Python+allure自动化测试环境
通过以上步骤,你可以在Docker中搭建起Jenkins自动化测试环境,实现Python测试的自动化执行和Allure报告生成。 买CN2云服务器,免备案服务器,高防服务器,就选蓝易云。百度搜索:蓝易云
28 6
|
20天前
|
jenkins Java 持续交付
Docker搭建持续集成平台Jenkins最简教程
Jenkins 是一个广泛使用的开源持续集成工具,它能够自动化构建、测试和部署软件项目。在本文中,我们将使用 Docker 搭建一个基于 Jenkins 的持续集成平台。
106 2
|
25天前
|
缓存 运维 Serverless
应用研发平台EMAS产品常见问题之测试检查更新没有反应如何解决
应用研发平台EMAS(Enterprise Mobile Application Service)是阿里云提供的一个全栈移动应用开发平台,集成了应用开发、测试、部署、监控和运营服务;本合集旨在总结EMAS产品在应用开发和运维过程中的常见问题及解决方案,助力开发者和企业高效解决技术难题,加速移动应用的上线和稳定运行。
|
29天前
|
机器学习/深度学习 人工智能 监控
视觉智能平台常见问题之体验产品的美颜测试关掉如何解决
视觉智能平台是利用机器学习和图像处理技术,提供图像识别、视频分析等智能视觉服务的平台;本合集针对该平台在使用中遇到的常见问题进行了收集和解答,以帮助开发者和企业用户在整合和部署视觉智能解决方案时,能够更快地定位问题并找到有效的解决策略。
22 1
|
1月前
|
SQL Apache 流计算
Apache Flink官方网站提供了关于如何使用Docker进行Flink CDC测试的文档
【2月更文挑战第25天】Apache Flink官方网站提供了关于如何使用Docker进行Flink CDC测试的文档
131 3
|
1月前
|
Linux iOS开发 Docker
Docker多平台安装
Docker多平台安装
46 0
|
1月前
|
存储 Linux 测试技术
【Docker项目实战】使用Docker部署Raneto知识库平台
【2月更文挑战第11天】使用Docker部署Raneto知识库平台
67 2
【Docker项目实战】使用Docker部署Raneto知识库平台

热门文章

最新文章