☆打卡算法☆LeetCode 179. 最大数 算法解析

简介: ☆打卡算法☆LeetCode 179. 最大数 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个非负整数,重新排列数的顺序使之组成一个最大整数。”

2、题目描述

给定一组非负整数 nums,重新排列每个数的顺序(每个数不可拆分)使之组成一个最大的整数。

注意: 输出结果可能非常大,所以你需要返回一个字符串而不是整数。

示例 1:
输入: nums = [10,2]
输出: "210"
示例 2:
输入: nums = [3,30,34,5,9]
输出: "9534330"

二、解题

1、思路分析

这道题要求重新排列每个数的顺序组成最大整数,可以逐个比较数组的中数值,将较大的数值放到前面。

比如:[45,56,81,76,123] ,结果:"81765645123"。

但是,数组中有相同数字开头的情况,比如[4,42]和[4,45]:

  • 对于[4,42],比较442>424,需要把4放前面
  • 对于[4,45],比如445<454,需要把45放前面

对于这种在排序前无法确定两个数谁大的情况应该怎么排序的?

这种情况就可以根据不同的排序 结果 来决定两个数的排序关系:

  • 如果结果,ab>ba,则需要将a放在b前面
  • 如果结果,ab

2、代码实现

代码参考:

class Solution {
    public String largestNumber(int[] nums) {
        int n = nums.length;
        String[] ss = new String[n];
        for (int i = 0; i < n; i++) ss[i] = "" + nums[i];
        Arrays.sort(ss, (a, b) -> {
            String sa = a + b, sb = b + a ;
            return sb.compareTo(sa);
        });
        StringBuilder sb = new StringBuilder();
        for (String s : ss) sb.append(s);
        int len = sb.length();
        int k = 0;
        while (k < len - 1 && sb.charAt(k) == '0') k++;
        return sb.substring(k);
    }
}

1702380269340.jpg

3、时间复杂度

时间复杂度:O(n2)

由于是对String进行排序,当排序对象不是Java中基本数据类型时,不会使用快排,Arrays.sort()底层会使用插入排序,那么时间复杂度就是O(n2)。

空间复杂度:O(n)

其中n是数组的长度。

三、总结

总结来说解题思路就是:

  • 转成字符串数组
  • 两两比较字符串中的元素的大小
  • 以结果为导向,确定哪个元素在前面
  • 输出结果
相关文章
|
10月前
|
算法 Go 索引
【LeetCode 热题100】45:跳跃游戏 II(详细解析)(Go语言版)
本文详细解析了力扣第45题“跳跃游戏II”的三种解法:贪心算法、动态规划和反向贪心。贪心算法通过选择每一步能跳到的最远位置,实现O(n)时间复杂度与O(1)空间复杂度,是面试首选;动态规划以自底向上的方式构建状态转移方程,适合初学者理解但效率较低;反向贪心从终点逆向寻找最优跳点,逻辑清晰但性能欠佳。文章对比了各方法的优劣,并提供了Go语言代码实现,助你掌握最小跳跃次数问题的核心技巧。
434 15
|
4月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
10月前
|
机器学习/深度学习 存储 算法
【LeetCode 热题100】347:前 K 个高频元素(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 347——前 K 个高频元素的三种解法:哈希表+小顶堆、哈希表+快速排序和哈希表+桶排序。每种方法都附有清晰的思路讲解和 Go 语言代码实现。小顶堆方法时间复杂度为 O(n log k),适合处理大规模数据;快速排序方法时间复杂度为 O(n log n),适用于数据量较小的场景;桶排序方法在特定条件下能达到线性时间复杂度 O(n)。文章通过对比分析,帮助读者根据实际需求选择最优解法,并提供了完整的代码示例,是一篇非常实用的算法学习资料。
637 90
|
9月前
|
存储 算法 Go
【LeetCode 热题100】17:电话号码的字母组合(详细解析)(Go语言版)
LeetCode 17题解题思路采用回溯算法,通过递归构建所有可能的组合。关键点包括:每位数字对应多个字母,依次尝试;递归构建下一个字符;递归出口为组合长度等于输入数字长度。Go语言实现中,使用map存储数字到字母的映射,通过回溯函数递归生成组合。时间复杂度为O(3^n * 4^m),空间复杂度为O(n)。类似题目包括括号生成、组合、全排列等。掌握回溯法的核心思想,能够解决多种排列组合问题。
392 11
|
9月前
|
Go
【LeetCode 热题100】155:最小栈(详细解析)(Go语言版)
本文详细解析了力扣热题155:最小栈的解题思路与实现方法。题目要求设计一个支持 push、核心思路是使用辅助栈法,通过两个栈(主栈和辅助栈)来维护当前栈中的最小值。具体操作包括:push 时同步更新辅助栈,pop 时检查是否需要弹出辅助栈的栈顶,getMin 时直接返回辅助栈的栈顶。文章还提供了 Go 语言的实现代码,并对复杂度进行了分析。此外,还介绍了单栈 + 差值记录法的进阶思路,并总结了常见易错点,如 pop 操作时忘记同步弹出辅助栈等。
318 6
|
9月前
|
Go 索引
【LeetCode 热题100】739:每日温度(详细解析)(Go语言版)
这篇文章详细解析了 LeetCode 第 739 题“每日温度”,探讨了如何通过单调栈高效解决问题。题目要求根据每日温度数组,计算出等待更高温度的天数。文中推荐使用单调递减栈,时间复杂度为 O(n),优于暴力解法的 O(n²)。通过实例模拟和代码实现(如 Go 语言版本),清晰展示了栈的操作逻辑。此外,还提供了思维拓展及相关题目推荐,帮助深入理解单调栈的应用场景。
369 6
|
10月前
|
存储 算法 数据可视化
【二叉树遍历入门:从中序遍历到层序与右视图】【LeetCode 热题100】94:二叉树的中序遍历、102:二叉树的层序遍历、199:二叉树的右视图(详细解析)(Go语言版)
本文详细解析了二叉树的三种经典遍历方式:中序遍历(94题)、层序遍历(102题)和右视图(199题)。通过递归与迭代实现中序遍历,深入理解深度优先搜索(DFS);借助队列完成层序遍历和右视图,掌握广度优先搜索(BFS)。文章对比DFS与BFS的思维方式,总结不同遍历的应用场景,为后续构造树结构奠定基础。
513 10
|
10月前
|
Go 索引 Perl
【LeetCode 热题100】【二叉树构造题精讲:前序 + 中序建树 & 有序数组构造 BST】(详细解析)(Go语言版)
本文详细解析了二叉树构造的两类经典问题:通过前序与中序遍历重建二叉树(LeetCode 105),以及将有序数组转化为平衡二叉搜索树(BST,LeetCode 108)。文章从核心思路、递归解法到实现细节逐一拆解,强调通过索引控制子树范围以优化性能,并对比两题的不同构造逻辑。最后总结通用构造套路,提供进阶思考方向,帮助彻底掌握二叉树构造类题目。
651 9
|
10月前
|
算法 Go
【LeetCode 热题100】73:矩阵置零(详细解析)(Go语言版)
这篇文章详细解析了力扣热题 73——矩阵置零问题,提供两种解法:一是使用额外标记数组,时间复杂度为 O(m * n),空间复杂度为 O(m + n);二是优化后的原地标记方法,利用矩阵的第一行和第一列记录需要置零的信息,将空间复杂度降低到 O(1)。文章通过清晰的代码示例与复杂度分析,帮助理解“原地操作”及空间优化技巧,并推荐相关练习题以巩固矩阵操作能力。适合刷题提升算法思维!
331 9
|
11月前
|
存储 自然语言处理 算法
【LeetCode 热题100】208:实现 Trie (前缀树)(详细解析)(Go语言版)
本文详细解析了力扣热题 208——实现 Trie(前缀树)。Trie 是一种高效的树形数据结构,用于存储和检索字符串集合。文章通过插入、查找和前缀匹配三个核心操作,结合 Go 语言实现代码,清晰展示了 Trie 的工作原理。时间复杂度为 O(m),空间复杂度也为 O(m),其中 m 为字符串长度。此外,还探讨了 Trie 的变种及应用场景,如自动补全和词典查找等。适合初学者深入了解 Trie 结构及其实际用途。
366 14

热门文章

最新文章

推荐镜像

更多
  • DNS