英伟达发布Tesla P4&P40两款基于Pascal架构的深度学习芯片

简介:

9月13日,NVIDIA(英伟达)在北京国际饭店会议中心召开GTC China 2016大会。GTC是全球最大最权威的 GPU 开发者和行业大会,展示各行业中运用 GPU 技术最重要的创新成果。在会上,NVIDIA发布了Tesla P4和Tesla P40两款Pascal架构GPU。本次集成了72亿个晶体管的Tesla P4(2560个CUDA核心)和120亿个晶体管的Tesla P40(3840个CUDA核心)是用来让用户识别和查询语音、图像或文本的。

Tesla P4&P40的性能相当于40个CPU,响应速度是CPU解决方案的45倍。同时,Pascal架构能助推深度学习加速65倍,最新一代的架构Pascal是首个专为深度学习而设计的GPU。

今年4月,NVIDIA推出过Tesla P100加速卡,它是用于执行深度学习神经网络任务的。速度是英伟达之前高端系统的12倍,研发费用高达20亿美元,单个芯片上集成了150亿个晶体管,是后续即将推出的DGX-1 深度学习系统的核心组成部分。Tesla P100主攻学习和训练任务,而Tesla P4&P40主要负责图像、文字和语音识别。

人工智能和深度学习驱使高端芯片达到前所未有的发展,他们将为人工智能提供最基础的服务,如语音援助、电子邮件过滤器、电影和产品推荐引擎等。现在人工智能将会像电能一样,给世界带来巨大的改变。Tesla P40将在10月上市,而Tesla P4将在11月。


本文转自d1net(转载)

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
人工智能 并行计算 程序员
【AI系统】SIMD & SIMT 与芯片架构
本文深入解析了SIMD(单指令多数据)与SIMT(单指令多线程)的计算本质及其在AI芯片中的应用,特别是NVIDIA CUDA如何实现这两种计算模式。SIMD通过单指令对多个数据进行操作,提高数据并行处理能力;而SIMT则在GPU上实现了多线程并行,每个线程独立执行相同指令,增强了灵活性和性能。文章详细探讨了两者的硬件结构、编程模型及硬件执行模型的区别与联系,为理解现代AI计算架构提供了理论基础。
93 12
|
2月前
|
机器学习/深度学习 编解码 异构计算
4090笔记本0.37秒直出大片!英伟达联手MIT清华祭出Sana架构,速度秒杀FLUX
英伟达、麻省理工学院与清华大学联合发布Sana,一款高效文本到图像生成框架。Sana通过深度压缩自编码器和线性注意力机制,实现快速高分辨率图像生成,生成1024×1024图像仅需不到1秒。此外,Sana采用解码器专用文本编码器增强文本与图像对齐度,大幅提高生成质量和效率。相比现有模型,Sana体积更小、速度更快,适用于多种设备。
46 7
|
8月前
|
机器学习/深度学习 人工智能 Cloud Native
深度学习在图像识别中的革新与挑战构建未来:云原生架构的进化之路
【5月更文挑战第30天】随着人工智能领域的迅猛发展,深度学习技术已变得无处不在,尤其是在图像识别任务中取得了突破性进展。本文章深入探讨了深度学习在图像识别应用中的创新方法,包括卷积神经网络(CNN)的高级架构、数据增强技术以及迁移学习策略。同时,文章也剖析了当前面临的主要挑战,如过拟合、计算资源消耗和对抗性攻击,并提出了潜在的解决方案。通过实例分析和最新研究成果的讨论,本文旨在为读者提供一个关于深度学习在图像识别领域内现状及未来发展的全面视角。
|
2月前
|
机器学习/深度学习 自然语言处理 计算机视觉
探索深度学习中的Transformer架构
探索深度学习中的Transformer架构
59 0
|
3月前
|
机器学习/深度学习 存储 人工智能
用60%成本干80%的事,DeepSeek分享沉淀多年的高性能深度学习架构
【10月更文挑战第2天】近年来,深度学习(DL)与大型语言模型(LLMs)的发展推动了AI的进步,但也带来了计算资源的极大需求。为此,DeepSeek团队提出了Fire-Flyer AI-HPC架构,通过创新的软硬件协同设计,利用10,000个PCIe A100 GPU,实现了高性能且低成本的深度学习训练。相比NVIDIA的DGX-A100,其成本减半,能耗降低40%,并在网络设计、通信优化、并行计算和文件系统等方面进行了全面优化,确保系统的高效与稳定。[论文地址](https://arxiv.org/pdf/2408.14158)
134 4
|
4月前
|
机器学习/深度学习 存储 人工智能
基于深度学习的认知架构的AI
基于深度学习的认知架构的AI是一类模仿人类认知过程的人工智能系统,旨在模拟人类感知、学习、推理、决策等复杂的认知功能。认知架构的目的是创建一个能够理解和处理复杂环境、实现自我学习和适应的AI系统
84 3
|
5月前
|
机器学习/深度学习 自然语言处理 数据处理
|
5月前
|
机器学习/深度学习 并行计算 算法
深度学习驱动的声音生成:FunAudioLLM的创新架构
【8月更文第28天】随着深度学习技术的发展,声音合成的质量得到了显著提升。本文将介绍 FunAudioLLM —— 一种基于深度学习的声音生成框架,旨在创造高质量、自然流畅的声音内容。我们将探讨 FunAudioLLM 的核心技术、训练流程及其实现细节,并提供一些示例代码。
104 0
|
6月前
|
机器学习/深度学习 SQL 自然语言处理
现代深度学习框架构建问题之深度学习通用架构的定义如何解决
现代深度学习框架构建问题之深度学习通用架构的定义如何解决
56 3
|
6月前
|
机器学习/深度学习 算法 文件存储
使用Python实现深度学习模型:神经架构搜索与自动机器学习
【7月更文挑战第5天】 使用Python实现深度学习模型:神经架构搜索与自动机器学习
99 2