☆打卡算法☆LeetCode 132. 分割回文串 II 算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: ☆打卡算法☆LeetCode 132. 分割回文串 II 算法解析

大家好,我是小魔龙,Unity3D软件工程师,VR、AR,虚拟仿真方向,不定时更新软件开发技巧,生活感悟,觉得有用记得一键三连哦。

一、题目

1、算法题目

“给定一个字符串,将字符串分割成一些子串,使每个子串都是回文串,返回符合要求的最少分割次数。”

2、题目描述

给你一个字符串 s,请你将 s 分割成一些子串,使每个子串都是回文。

返回符合要求的 最少分割次数

示例 1:
输入: s = "aab"
输出: 1
解释: 只需一次分割就可将 s 分割成 ["aa","b"] 这样两个回文子串。
示例 2:
输入: s = "a"
输出: 0

二、解题

1、思路分析

这道题是一道常规的动态规划提,首先定义f[r]为将[1,r]这一段字符分割成若干回文串的最小分割次数,那么答案就是f[n]。

那么就可以考虑f[r]是如何进行转移的:

  • 从起点开始到第r个字符,能形成回文串,最小分割次数为0,此时f[r]=0
  • 从起点开始到第r个字符,不能形成回文串,那么如果[l,r]这一段是回文串的话,那么就有f[r]=f[l-1]+1

枚举左端点,找出所有满足回文要求的左端点,在方案中选最小的一个即可。

2、代码实现

代码参考:

class Solution {
    public int minCut(String s) {
        int n = s.length();
        boolean[][] g = new boolean[n][n];
        for (int i = 0; i < n; ++i) {
            Arrays.fill(g[i], true);
        }
        for (int i = n - 1; i >= 0; --i) {
            for (int j = i + 1; j < n; ++j) {
                g[i][j] = s.charAt(i) == s.charAt(j) && g[i + 1][j - 1];
            }
        }
        int[] f = new int[n];
        Arrays.fill(f, Integer.MAX_VALUE);
        for (int i = 0; i < n; ++i) {
            if (g[0][i]) {
                f[i] = 0;
            } else {
                for (int j = 0; j < i; ++j) {
                    if (g[j + 1][i]) {
                        f[i] = Math.min(f[i], f[j] + 1);
                    }
                }
            }
        }
        return f[n - 1];
    }
}

1702359830748.jpg

3、时间复杂度

时间复杂度:O(n2)

其中n是字符串s的长度。

空间复杂度:O(n2)

其中n是字符串的长度。

三、总结

由于状态g[l[r]依赖于状态g[l+1][r-1],因此遍历左端点l是从大到小,遍历右端点r是从小到大。

因此最终的遍历过程可以优化为:

  • 右端点r一直往右移动
  • 左端点l在r在左边开始,一直往左移动



相关文章
|
3月前
|
算法 前端开发 数据处理
小白学python-深入解析一位字符判定算法
小白学python-深入解析一位字符判定算法
55 0
|
3月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
61 3
|
3月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
48 0
|
25天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
133 30
|
4天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
29天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
233 15
|
3月前
|
搜索推荐 算法
插入排序算法的平均时间复杂度解析
【10月更文挑战第12天】 插入排序是一种简单直观的排序算法,通过不断将未排序元素插入到已排序部分的合适位置来完成排序。其平均时间复杂度为$O(n^2)$,适用于小规模或部分有序的数据。尽管效率不高,但在特定场景下仍具优势。
|
2月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
75 4
|
2月前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####

推荐镜像

更多