垃圾回收算法概述和HotSpot算法细节(一)https://developer.aliyun.com/article/1391427
标记-整理算法
标记-复制算法在对象存活率较高时就要进行较多的复制操作,效率将会降低。
针对老年代对象的存亡特征,“标记-整理”(Mark-Compact)算法,其中的标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向内存空间一端移动,然后直接清理掉边界以外的内存。
标记-清除算法与标记-整理算法的本质差异在于前者是一种非移动式的回收算法,而后者是移动式的。是否移动回收后的存活对象是一项优缺点并存的风险决策:
- 如果移动存活对象,尤其是在老年代这种每次回收都有大量对象存活区域,移动存活对象并更新所有引用这些对象的地方将会是一种极为负重的操作,而且这种对象移动操作必须全程暂停用户应用程序才能进行
- 如果跟标记-清除算法那样完全不考虑移动和整理存活对象的话,弥散于堆中的存活对象导致的空间碎片化问题就只能依赖更为复杂的内存分配器和内存访问器来解决。内存的访问是用户程序最频繁的操作,甚至都没有之一,假如在这个环节上增加了额外的负担,势必会直接影响应用程序的吞吐量。
HotSpot 虚拟机里面关注吞吐量的 Parallel Scavenge收集器是基于标记-整理算法的,而关注延迟的 CMS 收集器则是基于标记-清除算法的,
HotSpot 的算法细节实现
根节点枚举
所有收集器在根节点枚举这一步骤时都是必须暂停用户线程的。
由于目前主流 Java 虚拟机使用的都是准确式垃圾收集,虚拟机应当是有办法直接得到哪些地方存放着对象引用的。在 HotSpot 的解决方案里,是使用一组称为 OopMa数据结构来达到这个目的。一旦类加载动作完成的时候, HotSpot 就会把对象内什么偏移量上是什么类型的数据计算出来,在即时编译过程中,也会在特定的位置记录下栈和寄存器里哪些位置是引用。这样收集器在扫描时就可以直接得知这些信息了,并不需要真正一个不漏地从方法区等 GC Roots 开始查找。
安全点
实际上 HotSpot 也的确没有为每条指令都生成 OopMap,只是在“特定的位置”记录了这些信息,这些位置被称为安全点(Safepoint)。安全点位置的选取基本上是以“是否具有让程序长时间执行的特征”为标准进行选定的,因
为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这样的原因而长时间执行,“长时间执行”的最明显特征就是指令序列的复用,例如方法调用、循环跳转、异常跳转等都属于指令序列复用,所以只有具有这些功能的指令才会产生安全点。
**抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension)**抢先式中断不需要线程的执行代码主动去配合,在垃圾收集发生时,系统首先把所有用户线程全部中断,如果发现有用户线程中断的地方不在安全点上,就恢复这条线程执行,让它一会再重新中断,直到跑到安全点上。主动式中断的思想是当垃圾收集需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志位,各个线程执行过程时会不停地主动去轮询这个标志,一旦发现中断标志为真时就自己在最近的安全点上主动中断挂起。轮询标志的地方和安全点是重合的,另外还要加上所有创建对象和其他需要在 Java 堆上分配内存的地方,这是为了检查是否即将要发生垃圾集,避免没有足够内存分配新对象。
安全区域
程序“不执行”的时候呢?所谓的程序不执行就是没有分配处理器时间,典型的场景便是用户线程处于 Sleep 状态或者Blocked 状态,这时候线程无法响应虚拟机的中断请求,不能再走到安全的地方去中断挂起自己,虚拟机也显然不可能持续等待线程重新被激活分配处理器时间。对于这种情况,就必须引入安全区域(Safe Region)来解决。
安全区域是指能够确保在某一段代码片段之中,引用关系不会发生变化,因此,在这个区域中任意地方开始垃圾收集都是安全的。我们也可以把安全区域看作被扩展拉伸了的安全点。
记忆集与卡表
为解决对象跨代引用所带来的问题,垃圾收集器在新生代中建立了名为记忆集(Remembered Set)的数据结构,用以避免把整个老年代加进 GC Roots 扫描范围。所有涉及部分区域收集(Partial GC)行为的垃圾收集器,,都会面临相同的问题,
记忆集是一种用于记录从非收集区域指向收集区域的指针集合的抽象数据结构。
- 字长精度:每个记录精确到一个机器字长(就是处理器的寻址位数,如常见的 32位或 64 位,这个精度决定了机器访问物理内存地址的指针长度),该字包含跨代指针。
- 对象精度:每个记录精确到一个对象,该对象里有字段含有跨代指针。
- 卡精度:每个记录精确到一块内存区域,该区域内有对象含有跨代指针。
其中,第三种“卡精度”所指的是用一种称为“卡表”(Card Table)的方式去实现记忆集,这也是目前最常用的一种记忆集实现形式.卡表就是记忆集的一种具体实现,它定义了记忆集的记录精度、与堆内存的映射关系等。
卡表最简单的形式可以只是一个字节数组,而 HotSpot 虚拟机确实也是这样做的。以下这行代码是 HotSpot 默认的卡表标记逻辑:
CARD_TABLE [this address >> 9] = 0;
字节数组 CARD_TABLE 的每一个元素都对应着其标识的内存区域中一块特定大小的内存块,这个内存块被称作“卡页”(Card Page)。一般来说,卡页大小都是以 2 的 N次幂的字节数,通过上面代码可以看出 HotSpot 中使用的卡页是 2 的 9 次幂,即 512 字节(地址右移 9 位,相当于用地址除以 512)。
一个卡页的内存中通常包含不止一个对象,只要卡页内有一个(或更多)对象的字段存在着跨代指针,那就将对应卡表的数组元素的值标识为 1,称为这个元素变脏(Dirty),没有则标识为 0。在垃圾收集发生时,只要筛选出卡表中变脏的元素,就能轻易得出哪些卡页内存块中包含跨代指针,把它们加入 GC Roots 中一并扫描。
写屏障
在 HotSpot 虚拟机里是通过写屏障(Write Barrier)技术维护卡表状态的。写屏障以看作在虚拟机层面对“引用类型字段赋值”这个动作的 AOP 切面,在引用对象赋值时会产生一个环形(Around)通知,供程序执行额外的动作,也就是说赋值的前后都在写障覆盖范畴内。在赋值前的部分的写屏障叫作写前屏障(Pre-Write Barrier),在赋值后的则叫作写后屏障(Post-Write Barrier)。HotSpot 虚拟机的许多收集器中都有使用到写屏障。
应用写屏障后,虚拟机就会为所有赋值操作生成相应的指令,一旦收集器在写屏障中增加了更新卡表操作,无论更新的是不是老年代对新生代对象的引用。除了写屏障的开销外,卡表在高并发场景下还面临着“伪共享”(False Sharing)问题。伪共享是处理并发底层细节时一种经常需要考虑的问题,现代中央处理器的缓存系统中是以缓存行(Cache Line)为单位存储的,当多线程修改互相独立的变量时,如果这些变量恰好共享同一个缓存行,就会彼此影响(写回、无效化或者同步)而导致性能降低,这就是伪共享问题。
假设处理器的缓存行大小为 64 字节,由于一个卡表元素占 1 个字节,64 个卡表元素将共享同一个缓存行。这 64 个卡表元素对应的卡页总的内存为 32KB(64×512 节),也就是说如果不同线程更新的对象正好处于这 32KB 的内存区域内,就会导致更新卡表时正好写入同一个缓存行而影响性能。为了避免伪共享问题,一种简单的解决方案是不采用无条件的写屏障,而是先检查卡表标记,只有当该卡表元素未被标记过时才将其标记为变脏.
并发的可达性分析
- 白色:表示对象尚未被垃圾收集器访问过。显然在可达性分析刚刚开始的阶段,所有的对象都是白色的,若在分析结束的阶段,仍然是白色的对象,即代表不可达。
- 黑色:表示对象已经被垃圾收集器访问过,且这个对象的所有引用都已经扫描过。黑色的对象代表已经扫描过,它是安全存活的,如果有其他对象引用指向了黑色对象,无须重新扫描一遍。黑色对象不可能直接(不经过灰色对象)指向某个白色对象。
- 灰色:表示对象已经被垃圾收集器访问过,但这个对象上至少存在一个引用还没有被扫描过。
当且仅当以下两个条件同时满足时,会产生“对象消失”,即原本应该是黑色的对象被误标为白色:
- 赋值器插入了一条或多条从黑色对象到白色对象的新引用;
- 赋值器删除了全部从灰色对象到该白色对象的直接或间接引用。
因此,我们要解决并发扫描时的对象消失问题,只需破坏这两个条件的任意一个即可。由此分别产生了两种解决方案:增量更新(Incremental Update)和原始快照(Snapshot At The Beginning, SATB)。增量更新要破坏的是一个条件,当黑色对象插入新的指向白色对象的引用关系时,就将这个新插入的引用记录下来,等并发扫描结束之后,再将这些记录过的引用关系中的黑色对象为根,重新扫描一次。这可以简化理解为,黑色对象一旦新插入了指向
白色对象的引用之后,它就变回灰色对象了。原始快照要破坏的是第二个条件,当灰色对象要删除指向白色对象的引用关系时,就将这个要删除的引用记录下来,在并发扫描结束之后,再将这些记录过的引用关系中的灰色对象为根,重新扫描一次。这也可以简化理解为,无论引用关系删除与否,都会按照刚刚开始扫描那一刻的对象图快照来进行搜索。