Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析

简介: Python 教程之 Pandas(14)—— 使用 Pandas 进行数据分析

Pandas是最流行的用于数据分析的 Python 库。它提供高度优化的性能,后端源代码完全用CPython编写。

我们可以通过以下方式分析 pandas 中的数据:
1.Series
2.数据帧

Series:

Series 是 pandas 中定义的一维(1-D)数组,可用于存储任何数据类型。

代码 #1:创建 Series

# 创建 Series 的程序
# 导入 Panda 库
import pandas as pd
# 使用数据和索引创建 Series
a = pd.Series(Data, index = Index)

在这里,数据可以是:

  1. 一个标量值,可以是 integerValue、字符串
  2. 可以是键值对的Python 字典
  3. 一个Ndarray

注意:默认情况下,索引从 0、1、2、...(n-1) 开始,其中 n 是数据长度。


代码 #2:当 Data 包含标量值时

# 使用标量值创建 Series 的程序
# 数值数据
Data =[1, 3, 4, 5, 6, 2, 9]
# 使用默认索引值创建系列
s = pd.Series(Data) 
# 预定义的索引值
Index =['a', 'b', 'c', 'd', 'e', 'f', 'g']
# 创建具有预定义索引值的系列
si = pd.Series(Data, Index)

输出

image.png

具有默认索引的标量数据

image.png

带索引的标量数据

代码#3:当数据包含字典时

# 创建词典 Series 程序
dictionary ={'a':1, 'b':2, 'c':3, 'd':4, 'e':5}
# 创建字典类型 Series
sd = pd.Series(dictionary)

输出

image.png

字典类型数据

代码 #4:当 Data 包含 Ndarray

# 创建 ndarray series 的程序
# 定义二维数组
Data =[[2, 3, 4], [5, 6, 7]]
# 创建一系列二维数组
snd = pd.Series(Data) 

输出

image.png

数据作为 Ndarray

数据框:

DataFrames是 pandas 中定义的二维(2-D)数据结构,由行和列组成。

代码 #1:创建 DataFrame

# 创建 DataFrame 的程序
# 导入库
import pandas as pd
# 使用数据创建 DataFrame
a = pd.DataFrame(Data)

在这里,数据可以是:

  1. 一本或多本词典
  2. 一个或多个Series
  3. 2D-numpy Ndarray

代码 #2:当数据是字典时

# 使用两个字典创建数据框的程序
# 定义字典 1
dict1 ={'a':1, 'b':2, 'c':3, 'd':4}
# 定义字典 2
dict2 ={'a':5, 'b':6, 'c':7, 'd':8, 'e':9}
# 用 dict1 和 dict2 定义数据
Data = {'first':dict1, 'second':dict2}
# 创建数据框
df = pd.DataFrame(Data)

输出

image.png

带有两个字典的 DataFrame

代码 #3:当数据是Series时

# 创建三个系列的Dataframe的程序
import pandas as pd
# 定义 series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])
# 定义 series 2
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
# 定义 series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e']) 
# 定义 Data
Data ={'first':s1, 'second':s2, 'third':s3}
# 创建 DataFrame
dfseries = pd.DataFrame(Data)     

输出

image.png

三个 Series 的 DataFrame

 

代码 #4:当 Data 为 2D-numpy ndarray

注意:在创建 2D 数组的 DataFrame 时必须保持一个约束 - 2D 数组的维度必须相同。

# 从二维数组创建 DataFrame 的程序
# 导入库
import pandas as pd
# 定义 2d 数组 1
d1 =[[2, 3, 4], [5, 6, 7]]
# 定义 2d 数组 2
d2 =[[2, 4, 8], [1, 3, 9]]
# 定义 Data
Data ={'first': d1, 'second': d2}
# 创建 DataFrame
df2d = pd.DataFrame(Data) 

输出

image.png

带有 2d ndarray 的 DataFrame

目录
相关文章
|
17天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
48 0
|
8天前
|
SQL 数据挖掘 Python
R中单细胞RNA-seq数据分析教程 (1)
R中单细胞RNA-seq数据分析教程 (1)
28 5
R中单细胞RNA-seq数据分析教程 (1)
|
12天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
28 2
|
16天前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
28 2
|
9天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
9天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
12天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
3月前
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
79 2
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
179 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
84 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析