Python 教程之数据分析(3)—— Python中不同图表的数据可视化

简介: Python 教程之数据分析(3)—— Python中不同图表的数据可视化

数据可视化是以图形格式呈现数据。它通过以简单易懂的格式汇总和呈现大量数据,帮助人们理解数据的重要性,并有助于清晰有效地传达信息。


考虑这个给定的数据集,我们将为其绘制不同的图表:

image.png

用于分析和呈现数据的不同类型的图表

 

1.直方图:

直方图表示特定现象发生的频率,这些现象位于特定的数值范围内,并以连续和固定的间隔排列。

在下面的代码中绘制直方图Age, Income, Sales。因此,输出中的这些图显示了每个属性的每个唯一值的频率。

# 导入 pandas 和 matplotlib
import pandas as pd
import matplotlib.pyplot as plt
# 创建上面给出的表的二维数组
data = [['E001', 'M', 34, 123, 'Normal', 350],
    ['E002', 'F', 40, 114, 'Overweight', 450],
    ['E003', 'F', 37, 135, 'Obesity', 169],
    ['E004', 'M', 30, 139, 'Underweight', 189],
    ['E005', 'F', 44, 117, 'Underweight', 183],
    ['E006', 'M', 36, 121, 'Normal', 80],
    ['E007', 'M', 32, 133, 'Obesity', 166],
    ['E008', 'F', 26, 140, 'Normal', 120],
    ['E009', 'M', 32, 133, 'Normal', 75],
    ['E010', 'M', 36, 133, 'Underweight', 40] ]
# 使用上述数据数组创建的数据框
df = pd.DataFrame(data, columns = ['EMPID', 'Gender',
                  'Age', 'Sales',
                  'BMI', 'Income'] )
# 为数值数据创建直方图
df.hist()
# show plot
plt.show()

输出:

image.png

2. 柱形图:

柱形图用于显示不同属性之间的比较,或者它可以显示项目随时间的比较。

# 此处使用之前代码的数据框
# 绘制数值条形图,将显示所有 3 个年龄、收入、销售额之间的比较
df.plot.bar()
# 在 2 个属性之间绘制
plt.bar(df['Age'], df['Sales'])
plt.xlabel("Age")
plt.ylabel("Sales")
plt.show()

输出:

image.png

3. 箱线图:

箱线图是基于 minimum, first quartile, median, third quartile, and maximum. 术语“箱线图”来自这样一个事实,即图形看起来像一个矩形,线条从顶部和底部延伸。由于延伸线,这种类型的图有时被称为盒须图。

# 对于数据框的每个数字属性
df.plot.box()
# 单个属性箱线图
plt.boxplot(df['Income'])
plt.show()

输出:

image.png

4、饼图:

饼图显示一个静态数字以及类别如何代表整体的一部分。饼图以百分比表示数字,所有段的总和需要等于 100%。

plt.pie(df['Age'], labels = {"A", "B", "C",
              "D", "E", "F",
              "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()
plt.pie(df['Income'], labels = {"A", "B", "C",
                "D", "E", "F",
                "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()
plt.pie(df['Sales'], labels = {"A", "B", "C",
              "D", "E", "F",
              "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()

输出:

image.png

5、散点图:

散点图显示了两个不同变量之间的关系,它可以揭示分布趋势。当有许多不同的数据点,并且您想突出数据集中的相似性时,应该使用它。这在查找异常值和了解数据分布时很有用。

# 收入和年龄之间的散点图
plt.scatter(df['income'], df['age'])
plt.show()
# 收入和销售额之间的散点图
plt.scatter(df['income'], df['sales'])
plt.show()
# 销售额和年龄之间的散点图
plt.scatter(df['sales'], df['age'])
plt.show()

输出 :

image.png

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。


目录
相关文章
|
3天前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy教程之SciPy模块列表13:单位类型。常量模块包含多种单位,如公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了如何使用`constants`模块获取零摄氏度对应的开尔文值(273.15)和华氏度与摄氏度的转换系数(0.5556)。
8 1
|
5天前
|
Python
SciPy 教程 之 SciPy 模块列表 9
SciPy教程之常量模块介绍,涵盖多种单位类型,如公制、质量、角度、时间、长度、压强等。示例展示了如何使用`scipy.constants`模块查询不同压强单位对应的帕斯卡值,包括atm、bar、torr、mmHg和psi。
8 1
|
5天前
|
Python
SciPy 教程 之 SciPy 模块列表 8
SciPy教程之常量模块单位类型介绍。该模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例展示了部分长度单位的转换值,例如英寸、英尺、海里等。
9 1
|
1天前
|
Python
SciPy 教程 之 SciPy 模块列表 16
SciPy教程之SciPy模块列表16 - 单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例代码展示了力学单位的使用,如牛顿、磅力和千克力等。
4 0
|
2天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy 教程之 SciPy 模块列表 15 - 功率单位。常量模块包含多种单位,如公制、质量、时间等。功率单位中,1 瓦特定义为 1 焦耳/秒,表示每秒转换或耗散的能量速率。示例代码展示了如何使用 `constants` 模块获取马力值(745.6998715822701)。
6 0
|
2天前
|
JavaScript Python
SciPy 教程 之 SciPy 模块列表 15
SciPy教程之SciPy模块列表15:单位类型。常量模块包含多种单位,如公制、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。功率单位以瓦特(W)表示,1W=1J/s。示例代码展示了如何使用`constants`模块获取马力(hp)的值,结果为745.6998715822701。
7 0
|
3天前
|
Python
SciPy 教程 之 SciPy 模块列表 13
SciPy 教程之 SciPy 模块列表 13 - 单位类型。常量模块包含多种单位:公制、二进制(字节)、质量、角度、时间、长度、压强、体积、速度、温度、能量、功率和力学单位。示例:`constants.zero_Celsius` 返回 273.15 开尔文,`constants.degree_Fahrenheit` 返回 0.5555555555555556。
6 0
|
4天前
|
Python
SciPy 教程 之 SciPy 模块列表 11
SciPy教程之SciPy模块列表11:单位类型。常量模块包含公制单位、质量单位、角度换算、时间单位、长度单位、压强单位、体积单位、速度单位、温度单位、能量单位、功率单位、力学单位等。体积单位示例展示了不同体积单位的换算,如升、加仑、流体盎司、桶等。
8 0
|
5天前
|
Python
SciPy 教程 之 SciPy 模块列表 9
SciPy 教程之 SciPy 模块列表:常量模块包含多种单位类型,如公制单位、质量单位、时间单位等。压强单位部分展示了如何将不同单位转换为帕斯卡,例如 psi 转换为 6894.757293168361 帕斯卡。
9 0
|
5天前
|
数据采集 机器学习/深度学习 数据可视化
深入浅出:用Python进行数据分析的入门指南
【10月更文挑战第21天】 在信息爆炸的时代,掌握数据分析技能就像拥有一把钥匙,能够解锁隐藏在庞大数据集背后的秘密。本文将引导你通过Python语言,学习如何从零开始进行数据分析。我们将一起探索数据的收集、处理、分析和可视化等步骤,并最终学会如何利用数据讲故事。无论你是编程新手还是希望提升数据分析能力的专业人士,这篇文章都将为你提供一条清晰的学习路径。

热门文章

最新文章