Python 教程之数据分析(3)—— Python中不同图表的数据可视化

简介: Python 教程之数据分析(3)—— Python中不同图表的数据可视化

数据可视化是以图形格式呈现数据。它通过以简单易懂的格式汇总和呈现大量数据,帮助人们理解数据的重要性,并有助于清晰有效地传达信息。


考虑这个给定的数据集,我们将为其绘制不同的图表:

image.png

用于分析和呈现数据的不同类型的图表

 

1.直方图:

直方图表示特定现象发生的频率,这些现象位于特定的数值范围内,并以连续和固定的间隔排列。

在下面的代码中绘制直方图Age, Income, Sales。因此,输出中的这些图显示了每个属性的每个唯一值的频率。

# 导入 pandas 和 matplotlib
import pandas as pd
import matplotlib.pyplot as plt
# 创建上面给出的表的二维数组
data = [['E001', 'M', 34, 123, 'Normal', 350],
    ['E002', 'F', 40, 114, 'Overweight', 450],
    ['E003', 'F', 37, 135, 'Obesity', 169],
    ['E004', 'M', 30, 139, 'Underweight', 189],
    ['E005', 'F', 44, 117, 'Underweight', 183],
    ['E006', 'M', 36, 121, 'Normal', 80],
    ['E007', 'M', 32, 133, 'Obesity', 166],
    ['E008', 'F', 26, 140, 'Normal', 120],
    ['E009', 'M', 32, 133, 'Normal', 75],
    ['E010', 'M', 36, 133, 'Underweight', 40] ]
# 使用上述数据数组创建的数据框
df = pd.DataFrame(data, columns = ['EMPID', 'Gender',
                  'Age', 'Sales',
                  'BMI', 'Income'] )
# 为数值数据创建直方图
df.hist()
# show plot
plt.show()

输出:

image.png

2. 柱形图:

柱形图用于显示不同属性之间的比较,或者它可以显示项目随时间的比较。

# 此处使用之前代码的数据框
# 绘制数值条形图,将显示所有 3 个年龄、收入、销售额之间的比较
df.plot.bar()
# 在 2 个属性之间绘制
plt.bar(df['Age'], df['Sales'])
plt.xlabel("Age")
plt.ylabel("Sales")
plt.show()

输出:

image.png

3. 箱线图:

箱线图是基于 minimum, first quartile, median, third quartile, and maximum. 术语“箱线图”来自这样一个事实,即图形看起来像一个矩形,线条从顶部和底部延伸。由于延伸线,这种类型的图有时被称为盒须图。

# 对于数据框的每个数字属性
df.plot.box()
# 单个属性箱线图
plt.boxplot(df['Income'])
plt.show()

输出:

image.png

4、饼图:

饼图显示一个静态数字以及类别如何代表整体的一部分。饼图以百分比表示数字,所有段的总和需要等于 100%。

plt.pie(df['Age'], labels = {"A", "B", "C",
              "D", "E", "F",
              "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()
plt.pie(df['Income'], labels = {"A", "B", "C",
                "D", "E", "F",
                "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()
plt.pie(df['Sales'], labels = {"A", "B", "C",
              "D", "E", "F",
              "G", "H", "I", "J"},
autopct ='% 1.1f %%', shadow = True)
plt.show()

输出:

image.png

5、散点图:

散点图显示了两个不同变量之间的关系,它可以揭示分布趋势。当有许多不同的数据点,并且您想突出数据集中的相似性时,应该使用它。这在查找异常值和了解数据分布时很有用。

# 收入和年龄之间的散点图
plt.scatter(df['income'], df['age'])
plt.show()
# 收入和销售额之间的散点图
plt.scatter(df['income'], df['sales'])
plt.show()
# 销售额和年龄之间的散点图
plt.scatter(df['sales'], df['age'])
plt.show()

输出 :

image.png

感谢大家的阅读,有什么问题的话可以在评论中告诉我。希望大家能够给我来个点赞+收藏+评论 ,你的支持是海海更新的动力!后面我会持续分享前端 & 后端相关的专业知识。


目录
相关文章
|
15天前
|
机器学习/深度学习 数据可视化 数据挖掘
使用Python进行数据分析的入门指南
本文将引导读者了解如何使用Python进行数据分析,从安装必要的库到执行基础的数据操作和可视化。通过本文的学习,你将能够开始自己的数据分析之旅,并掌握如何利用Python来揭示数据背后的故事。
|
17天前
|
数据可视化 数据挖掘
R中单细胞RNA-seq数据分析教程 (3)
R中单细胞RNA-seq数据分析教程 (3)
26 3
R中单细胞RNA-seq数据分析教程 (3)
|
19天前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
56 4
数据分析的 10 个最佳 Python 库
|
2天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
23 8
|
2天前
Seaborn 教程-主题(Theme)
Seaborn 教程-主题(Theme)
20 7
|
2天前
|
Python
Seaborn 教程-模板(Context)
Seaborn 教程-模板(Context)
19 4
|
2天前
|
数据可视化 Python
Seaborn 教程
Seaborn 教程
17 5
|
5天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
37 8
|
12天前
|
数据可视化 Python
使用Python进行数据可视化的初学者指南
在数据的海洋里,我们如何能够不迷失方向?通过数据可视化的力量,我们可以将复杂的数据集转化为易于理解的图形和图表。本文旨在为初学者提供一份简明的入门手册,介绍如何使用Python中的Matplotlib库来揭示数据背后的故事。我们将从基础的图表开始,逐步深入到更高级的可视化技术,确保每个步骤都清晰易懂,让初学者也能轻松上手。让我们开始绘制属于你自己的数据图谱吧!
|
19天前
|
数据可视化 数据处理 Python
Python编程中的数据可视化技术
在Python编程中,数据可视化是一项强大的工具,它能够将复杂的数据集转化为易于理解的图形。本文将介绍如何使用matplotlib和pandas这两个流行的Python库来实现数据可视化,并展示一些实用的代码示例。通过这些示例,读者将学会如何创建各种图表,包括折线图、柱状图和散点图等,以便更好地理解和呈现数据。