virsh io_cache_mode 虚拟机io种类

简介: virsh io_cache_mode 虚拟机io种类

doc

https://documentation.suse.com/sles/11-SP4/html/SLES-kvm4zseries/cha-qemu-cachemodes.html

cache mode


15.2 Description of Cache Modes

cache mode unspecified


In qemu-kvm versions older than v1.2 (eg SLES11 SP2), not specifying a cache mode meant that writethrough would be used as the default. Since that version, the various qemu-kvm guest storage interfaces have been fixed to handle writeback or writethrough semantics more correctly, allowing for the default caching mode to be switched to writeback. The guest driver for each of ide, scsi, and virtio have within their power to disable the write back cache, causing the caching mode used to revert to writethrough. The typical guest’s storage drivers will maintain the default caching mode as writeback, however.

cache = writethrough


This mode causes qemu-kvm to interact with the disk image file or block device with O_DSYNC semantics, where writes are reported as completed only when the data has been committed to the storage device. The host page cache is used in what can be termed a writethrough caching mode. The guest’s virtual storage adapter is informed that there is no writeback cache, so the guest would not need to send down flush commands to manage data integrity. The storage behaves as if there is a writethrough cache.

cache = writeback

This mode causes qemu-kvm to interact with the disk image file or block device with neither O_DSYNC nor O_DIRECT semantics, so the host page cache is used and writes are reported to the guest as completed when placed in the host page cache, and the normal page cache management will handle commitment to the storage device. Additionally, the guest’s virtual storage adapter is informed of the writeback cache, so the guest would be expected to send down flush commands as needed to manage data integrity. Analogous to a raid controller with RAM cache.

cache = none


This mode causes qemu-kvm to interact with the disk image file or block device with O_DIRECT semantics, so the host page cache is bypassed and I/O happens directly between the qemu-kvm userspace buffers and the storage device. Because the actual storage device may report a write as completed when placed in its write queue only, the guest’s virtual storage adapter is informed that there is a writeback cache, so the guest would be expected to send down flush commands as needed to manage data integrity. Equivalent to direct access to your hosts’ disk, performance wise.

cache = unsafe

This mode is similar to the cache=writeback mode discussed above. The key aspect of this “unsafe” mode, is that all flush commands from the guests are ignored. Using this mode implies that the user has accepted the trade-off of performance over risk of data loss in the event of a host failure. Useful, for example, during guest install, but not for production workloads.

cache=directsync


This mode causes qemu-kvm to interact with the disk image file or block device with both O_DSYNC and O_DIRECT semantics, where writes are reported as completed only when the data has been committed to the storage device, and when it is also desirable to bypass the host page cache. Like cache=writethrough, it is helpful to guests that do not send flushes when needed. It was the last cache mode added, completing the possible combinations of caching and direct access semantics.

15.3 Data Integrity Implications of Cache Modes

cache = writethrough, cache = none, cache=directsync

These are the safest modes, and considered equally safe, given that the guest operating system is “modern and well behaved”, which means that it uses flushes as needed. If you have a suspect guest, use writethough, or directsync. Note that some file systems are not compatible with cache=none or cache=directsync, as they do not support O_DIRECT, which these cache modes relies on.

cache = writeback


This mode informs the guest of the presence of a write cache, and relies on the guest to send flush commands as needed to maintain data integrity within its disk image. This is a common storage design which is completely accounted for within modern filesystems. But it should be noted that because there is a window of time between the time a write is reported as completed, and that write being committed to the storage device, this mode exposes the guest to data loss in the unlikely event of a host failure.

cache = unsafe


This mode is similar to writeback caching except the guest flush commands are ignored, nullifying the data integrity control of these flush commands, and resulting in a higher risk of data loss due to host failure. The name “unsafe” should serve as a warning that there is a much higher potential for data loss due to a host failure than with the other modes. Note that as the guest terminates, the cached data is flushed at that time.

15.4 Performance Implications of Cache Modes


The choice to make full use of the page cache, or to write through it, or to bypass it altogether can have dramatic performance implications. Other factors which influence disk performance include the capabilities of the actual storage system, what disk image format is used, the potential size of the page cache and the IO scheduler used. Additionally, not flushing the write cache increases performance, but with risk, as noted above. As a general rule, high end systems typically perform best with cache = none, because of the reduced data copying that occurs. The potential benefit of having multiple guests share the common host page cache, the ratio of reads to writes, and the use of aio = native (see below) should also be considered.

相关文章
|
5月前
|
安全 虚拟化
VMWare 虚拟机 CPU 设置里针对 CPU 的虚拟化 IOMMU(IO 内存管理单元) 选项功能介绍
VMWare 虚拟机 CPU 设置里针对 CPU 的虚拟化 IOMMU(IO 内存管理单元) 选项功能介绍
229 0
|
Linux 调度 KVM
KVM虚拟机IO处理过程(一) ----Guest VM I/O 处理过程
虚拟化技术主要包含三部分内容:CPU虚拟化,内存虚拟化,设备虚拟化.本系列文章主要描述磁盘设备的虚拟化过程,包含了一个读操作的I/O请求如何从Guest Vm到其最终被处理的整个过程.本系列文章中引用到的linux内核代码版本为3.
1140 0
|
前端开发 KVM 虚拟化
KVM虚拟机IO处理过程(二) ----QEMU/KVM I/O 处理过程
接着KVM虚拟机IO处理过程中Guest Vm IO处理过程(http://blog.csdn.net/dashulu/article/details/16820281),本篇文章主要描述IO从guest vm跳转到kvm和qemu后的处理过程.
1749 0
|
2月前
|
SQL 存储 数据挖掘
【虚拟机数据恢复】VMware虚拟机文件被误删除的数据恢复案例
虚拟机数据恢复环境: 某品牌R710服务器+MD3200存储,上层是ESXI虚拟机和虚拟机文件,虚拟机中存放有SQL Server数据库。 虚拟机故障: 机房非正常断电导致虚拟机无法启动。服务器管理员检查后发现虚拟机配置文件丢失,所幸xxx-flat.vmdk磁盘文件和xxx-000001-delta.vmdk快照文件还在。服务器管理员在尝试恢复虚拟机的过程中,将原虚拟机内的xxx-flat.vmdk删除后新建了一个虚拟机,并分配了精简模式的虚拟机磁盘和快照数据盘,但原虚拟机内的数据并没有恢复。
【虚拟机数据恢复】VMware虚拟机文件被误删除的数据恢复案例
|
Linux 虚拟化 数据安全/隐私保护
VMware使用 - 虚拟机克隆
如果已经安装了一台Linux操作系统,没有必要重新安装,只需要克隆就可以了,有两种方式。
16 0
|
3月前
|
存储 网络协议 虚拟化
如何操作VMware ESXi虚拟机的迁移?
如何操作VMware ESXi虚拟机的迁移?
89 1
|
3月前
|
存储 虚拟化 数据中心
如何操作VMware ESXi虚拟机的克隆?
如何操作VMware ESXi虚拟机的克隆?
53 1
|
2月前
|
Linux 虚拟化 数据安全/隐私保护
【Linux】VMware安装虚拟机- Windows + Linux
【1月更文挑战第20天】【Linux】VMware安装虚拟机- Windows + Linux

相关产品

  • 云迁移中心