把python函数转化为 tensorflow 函数 加速运算

简介: 把python函数转化为 tensorflow 函数 加速运算
docker run -tdi --gpus all  -p 60106:22 -p 60006:8888 --name  cujupt102 --privileged=true  registry.cn-hangzhou.aliyuncs.com/mkmk/gpujupyter:pydotGrapgviz /bin/bash && docker exec -d cujupt102 /bin/bash -c "cd /home &&(/etc/init.d/ssh start) && nohup jupyter notebook --allow-root & "
sshpass -p "Li" ssh -NTf -R 60006:172.16.102.168:60006 root@limengkai.work -o stricthostkeychecking=no
watch -n 1  nvidia-smi
pip install numpy sklearn matplotlib pandas tensorflow-gpu
sys.version_info(major=3, minor=7, micro=2, releaselevel='final', serial=0)
3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43) 
[Clang 6.0 (clang-600.0.57)]
matplotlib 3.0.3
numpy 1.17.2
pandas 0.25.1
sklearn 0.21.3
tensorflow 2.0.0-beta0
tensorflow.python.keras.api._v2.keras 2.2.4-tf
import warnings 
warnings.filterwarnings('ignore')
import matplotlib as mpl
import matplotlib.pyplot as plt 
%matplotlib inline
import numpy as np
import sklearn 
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import *
print(sys.version_info)
print(sys.version)
for module in mpl,np,pd,sklearn,tf,keras:
    print(module.__name__,module.__version__)
#tf.function  and auto-graph
def scaled_elu(z,scale=1.0,alpha=1.0):
    # z>=0? scale * z
    is_positive=tf.greater_equal(z,0.0)
    return scale * tf.where(is_positive,z,alpha*tf.nn.elu(z))
print(scaled_elu(tf.constant([-4.,-2])))
#根据python 方法转化成 tf 方法
scaled_elu_tf=tf.function(scaled_elu)
print(scaled_elu_tf(tf.constant([-4.,-3.])))
#根据 tf 方法 还原 python 方法
print(scaled_elu_tf.python_function is scaled_elu)
#tf 方法有什么优势,
#快!
%timeit scaled_elu(tf.random.normal((10000,10000)))
%timeit scaled_elu_tf(tf.random.normal((10000,10000)))
# 2.86 s ± 199 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 2.02 s ± 79.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#这仅仅是在 cpu 测试的结果,如果采用 gpu 加速会更加明显


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
23天前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
125 67
|
17天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
99 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
16天前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
42 18
|
8天前
|
数据可视化 DataX Python
Seaborn 教程-绘图函数
Seaborn 教程-绘图函数
39 8
|
17天前
|
Python
Python中的函数
Python中的函数
31 8
|
24天前
|
监控 测试技术 数据库
Python中的装饰器:解锁函数增强的魔法####
本文深入探讨了Python语言中一个既强大又灵活的特性——装饰器(Decorator),它以一种优雅的方式实现了函数功能的扩展与增强。不同于传统的代码复用机制,装饰器通过高阶函数的形式,为开发者提供了在不修改原函数源代码的前提下,动态添加新功能的能力。我们将从装饰器的基本概念入手,逐步解析其工作原理,并通过一系列实例展示如何利用装饰器进行日志记录、性能测试、事务处理等常见任务,最终揭示装饰器在提升代码可读性、维护性和功能性方面的独特价值。 ####
|
1月前
|
Python
Python中的`range`函数与负增长
在Python中,`range`函数用于生成整数序列,支持正向和负向增长。本文详细介绍了如何使用`range`生成负增长的整数序列,并提供了多个实际应用示例,如反向遍历列表、生成倒计时和计算递减等差数列的和。通过这些示例,读者可以更好地掌握`range`函数的使用方法。
47 5
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
79 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
85 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
下一篇
DataWorks