把python函数转化为 tensorflow 函数 加速运算

简介: 把python函数转化为 tensorflow 函数 加速运算
docker run -tdi --gpus all  -p 60106:22 -p 60006:8888 --name  cujupt102 --privileged=true  registry.cn-hangzhou.aliyuncs.com/mkmk/gpujupyter:pydotGrapgviz /bin/bash && docker exec -d cujupt102 /bin/bash -c "cd /home &&(/etc/init.d/ssh start) && nohup jupyter notebook --allow-root & "
sshpass -p "Li" ssh -NTf -R 60006:172.16.102.168:60006 root@limengkai.work -o stricthostkeychecking=no
watch -n 1  nvidia-smi
pip install numpy sklearn matplotlib pandas tensorflow-gpu
sys.version_info(major=3, minor=7, micro=2, releaselevel='final', serial=0)
3.7.2 (v3.7.2:9a3ffc0492, Dec 24 2018, 02:44:43) 
[Clang 6.0 (clang-600.0.57)]
matplotlib 3.0.3
numpy 1.17.2
pandas 0.25.1
sklearn 0.21.3
tensorflow 2.0.0-beta0
tensorflow.python.keras.api._v2.keras 2.2.4-tf
import warnings 
warnings.filterwarnings('ignore')
import matplotlib as mpl
import matplotlib.pyplot as plt 
%matplotlib inline
import numpy as np
import sklearn 
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.layers import *
print(sys.version_info)
print(sys.version)
for module in mpl,np,pd,sklearn,tf,keras:
    print(module.__name__,module.__version__)
#tf.function  and auto-graph
def scaled_elu(z,scale=1.0,alpha=1.0):
    # z>=0? scale * z
    is_positive=tf.greater_equal(z,0.0)
    return scale * tf.where(is_positive,z,alpha*tf.nn.elu(z))
print(scaled_elu(tf.constant([-4.,-2])))
#根据python 方法转化成 tf 方法
scaled_elu_tf=tf.function(scaled_elu)
print(scaled_elu_tf(tf.constant([-4.,-3.])))
#根据 tf 方法 还原 python 方法
print(scaled_elu_tf.python_function is scaled_elu)
#tf 方法有什么优势,
#快!
%timeit scaled_elu(tf.random.normal((10000,10000)))
%timeit scaled_elu_tf(tf.random.normal((10000,10000)))
# 2.86 s ± 199 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
# 2.02 s ± 79.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
#这仅仅是在 cpu 测试的结果,如果采用 gpu 加速会更加明显


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
20 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
8天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
28 3
|
28天前
|
Python
Python之函数详解
【10月更文挑战第12天】
Python之函数详解
|
29天前
|
存储 数据安全/隐私保护 索引
|
19天前
|
测试技术 数据安全/隐私保护 Python
探索Python中的装饰器:简化和增强你的函数
【10月更文挑战第24天】在Python编程的海洋中,装饰器是那把可以令你的代码更简洁、更强大的魔法棒。它们不仅能够扩展函数的功能,还能保持代码的整洁性。本文将带你深入了解装饰器的概念、实现方式以及如何通过它们来提升你的代码质量。让我们一起揭开装饰器的神秘面纱,学习如何用它们来打造更加优雅和高效的代码。
|
20天前
|
弹性计算 安全 数据处理
Python高手秘籍:列表推导式与Lambda函数的高效应用
列表推导式和Lambda函数是Python中强大的工具。列表推导式允许在一行代码中生成新列表,而Lambda函数则是用于简单操作的匿名函数。通过示例展示了如何使用这些工具进行数据处理和功能实现,包括生成偶数平方、展平二维列表、按长度排序单词等。这些工具在Python编程中具有高度的灵活性和实用性。
|
23天前
|
Python
python的时间操作time-函数介绍
【10月更文挑战第19天】 python模块time的函数使用介绍和使用。
27 4
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型