提示学习(Prompt-learning)

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
MSE Nacos/ZooKeeper 企业版试用,1600元额度,限量50份
云原生网关 MSE Higress,422元/月
简介: NLP有四大范式

如何定义标签词映射
标签词映射(Verbalizer)也是提示学习中可选的重要模块,用于建立预测词和标签之间的映射,将“预训练-微调”模式中预测标签的任务转换为预测模板中掩码位置的词语,从而将下游任务统一为预训练任务的形式。

  • 微调方式 : 数据集的标签为 负向 和 正向,分别映射为 0 和 1 ;
  • 提示学习 : 通过下边的标签词映射建立原始标签与预测词之间的映射
    总结
  1. Prompt的设计问题。目前使用 Prompt 的工作大多集中于分类任务和生成任务,其它任务则较少,因为如何有效地将预训练任务和 prompt 联系起来还是一个值得探讨的问题。另外,模板和答案的联系也函待解决。模型的表现同时依赖于使用的模板和答案的转化,如何同时搜索或者学习出两者联合的最好效果仍然很具挑战性。
  2. Prompt的理论分析和可解释性。尽管 Prompt 方法在很多情况下都取得了成功,但是目前 prompt-based learning 的理论分析和保证还很少,使得人们很难了解 Prompt 为什么能达到好的效果,又为什么在自然语言中意义相近的 Prompt 有时效果却相差很大。
    存在的疑问
    如何应用于生物信息学?
    存在的挑战:
    对于DNA、RNA、蛋白质序列,如何去构建一个合理的提示模板?
相关文章
|
自然语言处理
如何定义标签词映射
如何定义标签词映射
|
人工智能 自然语言处理 算法
Quiet-STaR:让语言模型在“说话”前思考
**Quiet-STaR** 是一种增强大型语言模型(LLM)推理能力的方法,它扩展了原有的**STaR** 技术,允许LLM为其生成的文本自动生成推理步骤。通过令牌并行抽样和学习的思想令牌,模型能同时预测单词和相关原理。教师强化指导确保输出的正确性。Quiet-STaR提升LLM在句子预测、复杂问题解答和推理基准测试上的表现,降低困惑度,促进更流畅的生成过程。未来研究将探索视觉和符号理由,以及结合可解释AI以提高模型透明度和定制化。[\[arXiv:2403.09629\]](https://arxiv.org/abs/2403.09629)
768 4
|
存储 Cloud Native Linux
C++ vector元素类型为什么不能是引用
C++ vector元素类型为什么不能是引用
|
3月前
|
安全 物联网
零压力了解 LoRA 微调原理
`LoRA` 全称为 `Low-Rank Adaptation`,翻译成中文就是`低秩适配`。⊙﹏⊙ 是不是一头雾水?没关系,相信我,看完下文你就会明白个大概了
296 0
零压力了解 LoRA 微调原理
|
Ubuntu Unix Linux
成功解决ERROR: Unable to find the development tool `cc` in your path; please make sure that you have the
成功解决ERROR: Unable to find the development tool `cc` in your path; please make sure that you have the
成功解决ERROR: Unable to find the development tool `cc` in your path; please make sure that you have the
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
1043 3
【赵渝强老师】基于大数据组件的平台架构
|
11月前
时间序列平稳性的双重假设检验:KPSS与ADF方法比较研究
时间序列分析中,确定序列的平稳性至关重要。本文介绍如何使用KPSS检验和Dickey-Fuller检验验证序列平稳性。KPSS假设数据非平稳,而Dickey-Fuller假设数据平稳。通过构造平稳(白噪声)和非平稳(随机游走)序列并进行检验,展示了两种方法的应用。KPSS适用于检测围绕趋势的平稳性,Dickey-Fuller则用于检验单位根。建议同时使用两者以确保结论可靠。
421 4
时间序列平稳性的双重假设检验:KPSS与ADF方法比较研究
|
人工智能 自然语言处理
到底什么是Prompt?
到底什么是Prompt?
806 0
|
10月前
|
人工智能 自然语言处理 数据可视化
Cursor 为低代码加速,AI 生成应用新体验!
通过连接 Cursor,打破了传统低代码开发的局限,我们无需编写一行代码,甚至连拖拉拽这种操作都可以抛诸脑后。只需通过与 Cursor 进行自然语言对话,用清晰的文字描述自己的应用需求,就能轻松创建出一个完整的低代码应用。
1535 8
|
Kubernetes 监控 测试技术
在K8S中,如何实现金丝雀发布(灰度发布)?蓝绿发布?
在K8S中,如何实现金丝雀发布(灰度发布)?蓝绿发布?

热门文章

最新文章