细谈数据仓库

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 细谈数据仓库

01 前言

在了解数据仓库前,先贴上一张数据仓库的流程图,本文会逐步讲解下图的各个组件。

1.1 数据仓库流程图

1.2 数据仓库系统图

以下是一张中大型企业的很详细的数据仓库架构图(此图来自:https://www.zhihu.com/question/20623931):

02 为何需要数据仓库?

在我们的日常开发中,很多时候一个业务可能涉及多张表,举个例子:

比如我们做了一个图书管理系统,有以下几张表:

表名 逻辑表名 备注
图书主表 t_book 图书主要信息,例如“书名”
图书价格表 t_book_price 图书价格信息,关联t_book表
图书作者表 t_book_author 图书作者表,关联t_book表

如果我们要同时查询 “书名”、“价格”、“作者”并整理成一条数据返回,这个时候,我们需要用到了联表查询,但是随着业务的庞大,数据量暴增,联表查询的效率会快速下降,那么有什么解决方案吗?这个时候就有了“数据仓库”了!

我们可以把这些几张表的数据根据我们的定义的规则(模型)整合成一条数据存入我们的数据仓库

传统的 ETL 工作就是把业务数据库中提取、加工、来导入分析性的数据库(数据仓库)。

03 数据仓库概述

3.1 定义

引用:“数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。”

定义:数据仓库(Data Warehouse,简写为DWDWH)是一个面向主题的、集成的、相对稳定的、且随时间变化的数据集合,用于支持管理决策

特点::

  • 面向主题:指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关,比如我们可以定义模型自动生成表;
  • 相对稳定:数据一旦进入数据仓库,就不能再被改变了,当在操作型系统中把数据改变后,再进入数据仓库就会产生新的记录。这样数据仓库就保留了数据变化的轨迹;
  • 集成:数据仓库的数据有来自于分散的操作型数据,将所需数据从原来的数据中抽取出来,进行加工与集成,统一与综合(ETL)之后才能进入数据仓库;
  • 随时间变化:数据仓库要体现出数据随时间变化的情况,并且可以反映在过去某一个时间点上数据是什么样子的,也就是随时间变化的含义。而传统的操作型系统,只能保存当前数据,体现当前的情况;
  • 支持管理决策:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如:开始应用数据仓库的时点)到当前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。

3.2 数据仓库与传统数据库对比

下面我整理了 传统数据库(DB)数据仓库(DW ) 的对比表格:

类型 数据仓库(DW) 传统数据库(DB)
作用 数据分析 事务处理
结构 相对简单的(Denormalized)表格结构,存储结构相对松散,多冗余数据。 相对复杂的表格结构,存储结构相对紧致,少冗余数据
读写 一般只是读优化 ,并行查询(要进行找Nodelocation之类的预运算) 读和写都有优化
查询 相对复杂的read query,单次作用于相对大量的数据(历史数据) 相对简单的read/write query,单次作用于相对的少量数据
存储空间 可能存在大量冗余重复的数据 主表与次表保存数据
市面产品 AWS Redshift, Greenplum, Hive MySQL, Oracle, SqlServer

04 数据目录

A data catalog is a metadata management tool designed to help organizations find and manage large amounts of data – including tables, files and databases – stored in their ERP, human resources, finance and e-commerce systems as well as other sources like social media feeds. - https://searchdatamanagement.techtarget.com

如果有很多不同的组需要共享同一个Datawarehouse,那么他们的脚本可能会相互影响,那么这个时候就用到了数据目录(Data Catalog)的概念。

数据目录:通过数据目录储存元数据,然后发布出去让不同组的数据仓库都可以同步这个数据。这样,每个不同组的数据仓库都拿到了同样的Denormalized数据,但是却相互独立开了。如下图(摘自知乎:https://www.zhihu.com/question/20623931):

数据目录(分区)有如下好处:

  1. 数据装载
  2. 数据访问
  3. 数据存档
  4. 数据删除
  5. 数据监控
  6. 数据存储

05 数据仓库分层

下面来了解一下数仓的一些概念ODS,DM,DWD,DWS,DIM,附上一张自己整理的图:

5.1 ODS层

数据从源表拉过来,进行etl(比如`mysql 映射到hive,那么到了hive里面就是ods层),但是,这一层面的数据却不等同于原始数据。在源数据装入这一层时,要进行诸如:

  • 去噪:例如有一条数据中人的年龄是 1000 岁,这种属于异常数据,就需要提前做一些处理
  • 去重:例如在个人资料表中,同一 ID 却有两条重复数据,在接入的时候需要做一步去重
  • 字段命名规范
  • 。。。。。。

5.2 DW数据仓库层

DW就是数据仓库层,我们从ODS层获取数据,然后写入DW,在写入DW之前,需要按照主题建立各种数据模型,因此DW可以细分为:

  • 数据明细层:DWD(Data Warehouse Detail)
  • 数据中间层:DWM(Data WareHouse Middle)
  • 数据服务层:DWS(Data WareHouse Servce)或 DM(Data Market数据集市)

5.2.1 STAGE临时缓冲层

概念STAGE 层就类似于一个临时缓存区,屏蔽对业务系统的干扰,一般与业务系统保持一致,一般都会有数据老化机制,不用长期保存,不对外开放数据。

5.2.1 DWD数据明细层

DWD 概念:是数据仓库的细节数据层,是对stage层数据进行沉淀,减少了抽取的复杂性,同时ODS/DWD的信息模型组织主要遵循企业业务事务处理的形式,将各个专业数据进行集中,明细层跟stage层的粒度一致属于分析的公共资源(部分数据直接来自kafka,部分数据为接口层数据与历史数据合成);

5.2.2 DWM数据中间层

概念:轻度汇总层数据仓库中DWD层和DWS层之间的一个过渡层次,是对DWD层的生产数据进行轻度综合和汇总统计(可以把复杂的清洗,处理包含,如根据PV日志生成的会话数据)。

轻度综合层与DWD的主要区别在于二者的应用领域不同

  • DWD的数据来源于生产型系统,并未满意一些不可预见的需求而进行沉淀;
  • 轻度综合层则面向分析型应用进行细粒度的统计和沉淀
分类 描述
数据生成方式 由明细层按照一定的业务需求生成轻度汇总表。明细层需要复杂清洗的数据和需要MR处理的数据也经过处理后接入到轻度汇总层
日志存储方式 内表,parquet文件格式
日志删除方式 长久存储
表schema 一般按天创建分区,没有时间概念的按具体业务选择分区字段
库与表命名 库名(dwb)、表名(初步考虑格式为:dwb日期业务表名,待定)
旧数据更新方式 直接覆盖

5.2.3 DWS数据服务层

概念:又称数据集市DM或宽表。按照业务划分,如流量、订单、用户等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。

分类 描述
数据生成方式 由轻度汇总层和明细层数据计算生成
日志存储方式 使用impala内表,parquet文件格式
日志删除方式 长久存储
表schema 一般按天创建分区,没有时间概念的按具体业务选择分区字段
库与表命名 库名(dm)、表名(初步考虑格式为:dm日期业务表名,待定 )
旧数据更新方式 直接覆盖

5.2.4 DIM公共层

概念:DIM层是数据仓库数据中,各层公用的维度数据,比如:省市县数据。

5.3 APP数据产品层

概念:应用层(数据产品层)是根据业务需要,由前面三层数据统计而出的结果,可以直接提供查询展现,或导入至MysqlES中使用,如我们经常说的报表数据,或者说那种大宽表,一般就放在这里。

分类 描述
数据生成方式 由明细层、轻度汇总层,数据集市层生成,一般要求数据主要来源于集市层
日志存储方式 使用impala内表,parquet文件格式
日志删除方式 长久存储
表schema 一般按天创建分区,没有时间概念的按具体业务选择分区字段
库与表命名 库名(暂定apl),表名(另外根据业务不同,不限定一定要一个库,其实就叫app_)就好了
旧数据更新方式 直接覆盖

06 ETL调度系统

6.1 ETL概述

对接入数据仓库的数据进行清洗、数据仓库各层间数据流转都需要大量的程序任务来操作,这些任务一般都是定时的,并且之间都是有前后依赖关系的,为了能保证任务的有序执行,就需要一个ETL调度系统来管理。

6.2 ETL工具选型

辛苦整理,有需要的童鞋直接私聊

07 元数据管理

元数据概念:

  • 描述数据的数据叫做元数据;
  • 元数据信息一般包括表名、表描述信息、所在数据库、表结构、存储位置等基本信息;
  • 元数据还有表之间的血缘关系信息、每天的增量信息、表结构修改记录信息等等。

数据仓库中有大量的表,元数据管理的意思就是用来收集、存储、查询数据仓库中元数据,这为数据使用方提供了极大的便利。

08 OLAP(联机分析处理)

数据库与数据仓库的区别实际就是OLTPOLAP的区别。

OLTP:操作型处理,叫联机事务处理OLTPOn-Line Transaction Processing),也可以称面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对少数记录进行查询、修改。用户较为关心操作的响应时间、数据的安全性、完整性和并发支持的用户数等问题。传统的数据库系统作为数据管理的主要手段,主要用于操作型处理。

OLAP :分析型处理,叫联机分析处理OLAPOn-Line Analytical Processing)一般针对某些主题的历史数据进行分析,支持管理决策(例如:智库,风控平台,BI平台),从决策中减少智商税。

它们两者间的不同点:

OLAP主流开源引擎有:Hive、Sparksql、Presto、Kylin、Impala、Druid、Clickhouse 等,由于不是本文的重点,大家可以去看《各个OLAP 引擎详细对比介绍》

09 文末

本文主要参考了以下的文献并结合自己的理解写出来的:

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
目录
相关文章
|
22天前
|
SQL 存储 分布式计算
数据仓库的性能问题及解决之道
随着数据量的增长和业务复杂度的提升,数据仓库性能问题日益凸显,如查询慢、跑批不完等。传统解决方案如集群、预计算和优化引擎虽有一定效果,但成本高、灵活性差或性能提升有限。esProc SPL 提供了一种新的解决思路,通过非 SQL 的计算体系,结合高性能算法和优化的数据存储,实现更高效的数据处理,尤其适用于复杂计算场景。
|
8月前
|
存储 关系型数据库 MySQL
数据仓库设计
数据仓库设计
112 3
|
8月前
|
存储 SQL 数据库
数据仓库原理(二)
数据仓库原理(二)
73 2
|
8月前
|
数据采集 人工智能 数据挖掘
数据仓库原理(一)
数据仓库原理(一)
92 2
|
数据采集 机器学习/深度学习 存储
【数据仓库】现代数据仓库坏了吗?
【数据仓库】现代数据仓库坏了吗?
|
SQL 存储 分布式计算
「数据仓库技术」怎么选择现代数据仓库
「数据仓库技术」怎么选择现代数据仓库
|
存储 数据挖掘 数据管理
数据仓库概论
数据仓库,英文名称Data Warehouse,可简写为DW和DWH,数据仓库顾名思义,是一个很大的数据存储集合,出于企业的分析性报告和决策支持目的而创建,它为企业提供一定的BI(商业智能)能力,指导业务流程改进、监视时间、成本、质量以及控制。数据库:数据库是面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对记录进行查询、修改。数据仓库的输入方式各种各样的数据源,最终的输出用于企业的数据分析、数据挖掘、数据报表等方向。数据库是面向事务的设计,数据仓库是面向主题设计的。数据库和数据仓库区别。
331 0
|
存储 数据采集 敏捷开发
DMBOK 读书笔记系列 数据仓库和商务智能
数据仓库赋能组织将不同来源的数据整合到公共的数据模型中去,整合后的数据能为业务运营提供洞察,为企业决策支持和创造组织价值开辟新的可能性。
DMBOK 读书笔记系列 数据仓库和商务智能
|
存储 SQL 数据挖掘
大数据时代,数据仓库究竟是干嘛的?
大数据时代,数据仓库究竟是干嘛的?
285 0
大数据时代,数据仓库究竟是干嘛的?
|
存储 SQL 机器学习/深度学习
一文读懂选择数据湖还是数据仓库
今天,每秒都在生成 TB 和 PB 的数据,为这些海量数据集寻找存储解决方案至关重要。
一文读懂选择数据湖还是数据仓库