Linux内核 RPS/RFS功能详细测试分析

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Linux内核 RPS/RFS功能详细测试分析

RPS和RFS

  • RPS 全称是 Receive Packet Steering, 这是Google工程师 Tom Herbert (therbert@google.com )提交的内核补丁, 在2.6.35进入Linux内核. 这个patch采用软件模拟的方式,实现了多队列网卡所提供的功能,分散了在多CPU系统上数据接收时的负载, 把软中断分到各个CPU处理,而不需要硬件支持,大大提高了网络性能。
  • RFS 全称是 Receive Flow Steering, 这也是Tom提交的内核补丁,它是用来配合RPS补丁使用的,是RPS补丁的扩展补丁,它把接收的数据包送达应用所在的CPU上,提高cache的命中率。
  • 这两个补丁往往都是一起设置,来达到最好的优化效果, 主要是针对单队列网卡多CPU环境(多队列多重中断的网卡也可以使用该补丁的功能,但多队列多重中断网卡有更好的选择:SMP IRQ affinity)

原理

RPS: RPS实现了数据流的hash归类,并把软中断的负载均衡分到各个cpu,实现了类似多队列网卡的功能。由于RPS只是单纯的把同一流的数据包分发给同一个CPU核来处理了,但是有可能出现这样的情况,即给该数据流分发的CPU核和执行处理该数据流的应用程序的CPU核不是同一个:数据包均衡到不同的cpu,这个时候如果应用程序所在的cpu和软中断处理的cpu不是同一个,此时对于cpu cache的影响会很大。那么RFS补丁就是用来确保应用程序处理的cpu跟软中断处理的cpu是同一个,这样就充分利用cpu的cache。

  • 应用RPS之前: 所有数据流被分到某个CPU, 多CPU没有被合理利用, 造成瓶颈
  • 应用RPS之后: 同一流的数据包被分到同个CPU核来处理,但可能出现cpu cache迁跃
  • 应用RPS+RFS之后: 同一流的数据包被分到应用所在的CPU核必要条件使用RPS和RFS功能,需要有大于等于2.6.35版本的Linux kernel.如何判断内核版本?
$ uname -r
.6.38-2-686-bigmem
  • 对比测试
类别 测试客户端 测试服务端
型号 BladeCenter HS23p BladeCenter HS23p
CPU Xeon E5-2609 Xeon E5-2630
网卡 Broadcom NetXtreme II BCM5709S Gigabit Ethernet Emulex Corporation OneConnect 10Gb NIC
内核 3.2.0-2-amd64 3.2.0-2-amd64
内存 62GB 66GB
系统 Debian 6.0.4 Debian 6.0.5
超线程
CPU核 4 6
驱动 bnx2 be2net
  • 客户端: netperf
  • 服务端: netserver
  • RPS cpu bitmap测试分类: 0(不开启rps功能), one cpu per queue(每队列绑定到1个CPU核上), all cpus per queue(每队列绑定到所有cpu核上), 不同分类的设置值如下
  1. 0(不开启rps功能)
/sys/class/net/eth0/queues/rx-0/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-1/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-2/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-3/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-4/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-5/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-6/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-7/rps_cpus 00000000
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 0
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 0
/proc/sys/net/core/rps_sock_flow_entries 0
  1. one cpu per queue(每队列绑定到1个CPU核上)
/sys/class/net/eth0/queues/rx-0/rps_cpus 00000001
/sys/class/net/eth0/queues/rx-1/rps_cpus 00000002
/sys/class/net/eth0/queues/rx-2/rps_cpus 00000004
/sys/class/net/eth0/queues/rx-3/rps_cpus 00000008
/sys/class/net/eth0/queues/rx-4/rps_cpus 00000010
/sys/class/net/eth0/queues/rx-5/rps_cpus 00000020
/sys/class/net/eth0/queues/rx-6/rps_cpus 00000040
/sys/class/net/eth0/queues/rx-7/rps_cpus 00000080
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 4096
/proc/sys/net/core/rps_sock_flow_entries 32768
  1. all cpus per queue(每队列绑定到所有cpu核上)
/sys/class/net/eth0/queues/rx-0/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-1/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-2/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-3/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-4/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-5/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-6/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-7/rps_cpus 000000ff
/sys/class/net/eth0/queues/rx-0/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-1/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-2/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-3/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-4/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-5/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-6/rps_flow_cnt 4096
/sys/class/net/eth0/queues/rx-7/rps_flow_cnt 4096
/proc/sys/net/core/rps_sock_flow_entries 32768
  • 测试方法: 每种测试类型执行3次,中间睡眠10秒, 每种测试类型分别执行100、500、1500个实例, 每实例测试时间长度为60秒
  • TCP_RR 1 byte: 测试TCP 小数据包 request/response的性能
netperf -t TCP_RR -H $serverip -c -C -l 60
  • UDP_RR 1 byte: 测试UDP 小数据包 request/response的性能
netperf -t UDP_RR -H $serverip -c -C -l 60
  • TCP_RR 256 byte: 测试TCP 大数据包 request/response的性能
netperf -t TCP_RR -H $serverip -c -C -l 60 -- -r256,256
  • UDP_RR 256 byte: 测试UDP 大数据包 request/response的性能
netperf -t UDP_RR -H $serverip -c -C -l 60 -- -r256,256
  • TPS测试结果
  • TCP_RR 1 byte小包测试结果
  • TCP_RR 256 byte大包测试结果
  • UDP_RR 1 byte小包测试结果
  • UDP_RR 256 byte大包测试结果
  • CPU负载变化
    在测试过程中,使用mpstat收集各个CPU核的负载变化
  1. 关闭RPS/RFS: 可以看出关闭RPS/RFS时,软中断的负载都在cpu0上,并没有有效的利用多CPU的特性,导致了性能瓶颈
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    3.65    0.00   35.75    0.05    0.01   14.56    0.00    0.00   45.98
Average:       0    0.00    0.00    0.00    0.00    0.00  100.00    0.00    0.00    0.00
Average:       1    4.43    0.00   37.76    0.00    0.11   11.49    0.00    0.00   46.20
Average:       2    5.01    0.00   45.80    0.00    0.00    0.00    0.00    0.00   49.19
Average:       3    5.11    0.00   45.07    0.00    0.00    0.00    0.00    0.00   49.82
Average:       4    3.52    0.00   40.38    0.14    0.00    0.00    0.00    0.00   55.96
Average:       5    3.85    0.00   39.91    0.00    0.00    0.00    0.00    0.00   56.24
Average:       6    3.62    0.00   40.48    0.14    0.00    0.00    0.00    0.00   55.76
Average:       7    3.87    0.00   38.86    0.11    0.00    0.00    0.00    0.00   57.16
  1. 每队列关联到一个CPU TCP_RR: 可以看出软中断负载已经能分散到各个CPU核上,有效利用了多CPU的特性,大大提高了系统的网络性能
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    5.58    0.00   59.84    0.01    0.00   22.71    0.00    0.00   11.86
Average:       0    2.16    0.00   20.85    0.00    0.04   72.03    0.00    0.00    4.93
Average:       1    4.68    0.00   46.27    0.00    0.00   42.73    0.00    0.00    6.32
Average:       2    6.76    0.00   63.79    0.00    0.00   11.03    0.00    0.00   18.42
Average:       3    6.61    0.00   65.71    0.00    0.00   11.51    0.00    0.00   16.17
Average:       4    5.94    0.00   67.83    0.07    0.00   11.59    0.00    0.00   14.58
Average:       5    5.99    0.00   69.42    0.04    0.00   12.54    0.00    0.00   12.01
Average:       6    5.94    0.00   69.41    0.00    0.00   12.86    0.00    0.00   11.78
Average:       7    6.13    0.00   69.61    0.00    0.00   14.48    0.00    0.00    9.77
  1. 每队列关联到一个CPU UDP_RR: CPU负载未能均衡的分布到各个CPU, 这是由于网卡hash计算在UDP包上的不足, 详细请见本文后记部分
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    3.01    0.00   29.84    0.07    0.01   13.35    0.00    0.00   53.71
Average:       0    0.00    0.00    0.08    0.00    0.00   90.01    0.00    0.00    9.91
Average:       1    3.82    0.00   32.87    0.00    0.05   12.81    0.00    0.00   50.46
Average:       2    4.84    0.00   37.53    0.00    0.00    0.14    0.00    0.00   57.49
Average:       3    4.90    0.00   37.92    0.00    0.00    0.16    0.00    0.00   57.02
Average:       4    2.57    0.00   32.72    0.20    0.00    0.09    0.00    0.00   64.42
Average:       5    2.66    0.00   33.54    0.11    0.00    0.08    0.00    0.00   63.60
Average:       6    2.75    0.00   32.81    0.09    0.00    0.06    0.00    0.00   64.30
Average:       7    2.71    0.00   32.66    0.17    0.00    0.06    0.00    0.00   64.40
  1. 每队列关联到所有CPU: 可以看出软中断负载已经能分散到各个CPU核上,有效利用了多CPU的特性,大大提高了系统的网络性能
Average:     CPU    %usr   %nice    %sys %iowait    %irq   %soft  %steal  %guest   %idle
Average:     all    5.39    0.00   59.97    0.00    0.00   22.57    0.00    0.00   12.06
Average:       0    1.46    0.00   21.83    0.04    0.00   72.08    0.00    0.00    4.59
Average:       1    4.45    0.00   46.40    0.00    0.04   43.39    0.00    0.00    5.72
Average:       2    6.84    0.00   65.62    0.00    0.00   11.39    0.00    0.00   16.15
Average:       3    6.71    0.00   67.13    0.00    0.00   12.07    0.00    0.00   14.09
Average:       4    5.73    0.00   66.97    0.00    0.00   10.71    0.00    0.00   16.58
Average:       5    5.74    0.00   68.57    0.00    0.00   13.02    0.00    0.00   12.67
Average:       6    5.79    0.00   69.27    0.00    0.00   12.31    0.00    0.00   12.63
Average:       7    5.96    0.00   68.98    0.00    0.00   12.00    0.00    0.00   13.06
  • 结果分析
    以下结果只是针对测试服务器特定硬件及系统的数据,在不同测试对象的RPS/RFS测试结果可能有不同的表现
    TCP性能:
  • 在没有打开RPS/RFS的情况下,随着进程数的增加,TCP tps性能并明显没有提升,在184~188k之间。
  • 打开RPS/RFS之后,随着RPS导致软中断被分配到所有CPU上和RFS增加的cache命中, 小数据包(1字节)及大数据包(256字节,相对小数据包而言, 而不是实际应用中的大数据包)的tps性能都有显著提升
  • 100个进程提升40%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高40%
  • 500个进程提升70%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高62%
  • 1500个进程提升75%的性能(两种RPS/RFS设置的性能结果一致), cpu负载升高77%
  • UDP性能:
  • 在没有打开RPS/RFS的情况下,随着进程数的增加,UDP tps性能并明显没有提升,在226~235k之间。
  • 打开RPS/RFS之后,,随着RPS导致软中断被分配到所有CPU上和RFS增加的cache命中, 小数据包(1字节)及大数据包(256字节,相对小数据包而言, 而不是实际应用中的大数据包)的TPS性能, 在每队列关联到所有CPU的情况下有显著提升, 而每队列关联到一个CPU后反倒是导致了UDP tps性能下降1% (这是bnx2网卡不支持UDP port hash及此次测试的局限性造成的结果, 详细分析见: 后记)
  • 每队列关联到所有CPU的情况下, 在100个进程时小包提升40%的性能, cpu负载升高60%; 大包提升33%, cpu负载升高47%
  • 每队列关联到所有CPU的情况下, 在500个进程提小包提升62%的性能, cpu负载升高71%; 大包提升60%, cpu负载升高65%
  • 每队列关联到所有CPU的情况下, 在1500个进程提升65%的性能, cpu负载升高75%; 大包提升64%, cpu负载升高74%
  • 后记
    UDP在每队列绑定到一个CPU时性能下降,而绑定到所有CPU时,却有性能提升,这一问题涉及到几个因素,当这几个因素凑一起时,导致了这种奇特的表现。
  • 此次测试的局限性:本次测试是1对1的网络测试,产生的数据包的IP地址都是相同的
  • bnx2网卡在RSS hash上,不支持UDP Port,也就是说,网卡在对TCP数据流进行队列选择时的hash包含了ip和port, 而在UDP上的hash, 只有IP地址,导致了本次测试(上面的局限性影响)的UDP数据包的hash结果都是一样的,数据包被转送到同一条队列。
  • 单单上面两个因素,还无法表现出UDP在每队列绑定到一个CPU时性能下降,而绑定到所有CPU时,却有性能提升的现象。 因为RPS/RFS本身也有hash计算,也就是进入队列后的数据包,还需要经过RPS/RFS的hash计算(这里的hash支持udp port), 然后进行第二次数据包转送选择;如果每队列绑定到一个CPU, 系统直接跳过第二次hash计算,数据包直接分配到该队列关联的CPU处理,也就导致了在第一次hash计算后被错误转送到某一队列的UDP数据包,将直接送到cpu处理,导致了性能的下降; 而如果是每队列绑定到所有CPU, 那么进入队列后的数据包会在第二次hash时被重新分配,修正了第一次hash的错误选择。
相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
3月前
|
安全 Linux 虚拟化
|
6天前
|
缓存 网络协议 Linux
PCIe 以太网芯片 RTL8125B 的 spec 和 Linux driver 分析备忘
本文详细介绍了 Realtek RTL8125B PCIe 以太网芯片的规格以及在 Linux 中的驱动安装和配置方法。通过深入分析驱动源码,可以更好地理解其工作原理和优化方法。在实际应用中,合理配置和优化驱动程序可以显著提升网络性能和稳定性。希望本文能帮助您更好地使用和管理 RTL8125B,以满足各种网络应用需求。
52 33
|
4月前
|
缓存 监控 算法
软件测试中的性能瓶颈分析与优化策略
【10月更文挑战第6天】 性能测试是确保软件系统在高负载条件下稳定运行的重要手段。本文将深入探讨性能测试的常见瓶颈,包括硬件资源、网络延迟和代码效率等问题。通过具体案例分析,我们将展示如何识别并解决这些问题,从而提升软件的整体性能。最后,文章还将分享一些实用的性能优化技巧,帮助读者在日常开发和测试中更好地应对性能挑战。
181 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
MarS:微软开源金融市场模拟预测引擎,支持策略测试、风险管理和市场分析
MarS 是微软亚洲研究院推出的金融市场模拟预测引擎,基于生成型基础模型 LMM,支持无风险环境下的交易策略测试、风险管理和市场分析。
81 8
MarS:微软开源金融市场模拟预测引擎,支持策略测试、风险管理和市场分析
|
30天前
|
弹性计算 运维 Ubuntu
os-copilot在Alibaba Cloud Linux镜像下的安装与功能测试
我顺利使用了OS Copilot的 -t -f 功能,我的疑惑是在换行的时候就直接进行提问了,每次只能写一个问题,没法连续换行更有逻辑的输入问题。 我认为 -t 管道 功能有用 ,能解决环境问题的连续性操作。 我认为 -f 管道 功能有用 ,可以单独创建可连续性提问的task问题。 我认为 | 对文件直接理解在新的服务器理解有很大的帮助。 此外,我还有建议 可以在非 co 的环境下也能进行连续性的提问。
71 7
|
1月前
|
安全 Linux 测试技术
Intel Linux 内核测试套件-LKVS介绍 | 龙蜥大讲堂104期
《Intel Linux内核测试套件-LKVS介绍》(龙蜥大讲堂104期)主要介绍了LKVS的定义、使用方法、测试范围、典型案例及其优势。LKVS是轻量级、低耦合且高代码覆盖率的测试工具,涵盖20多个硬件和内核属性,已开源并集成到多个社区CICD系统中。课程详细讲解了如何使用LKVS进行CPU、电源管理和安全特性(如TDX、CET)的测试,并展示了其在实际应用中的价值。
|
2月前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
89 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
2月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
38 11
|
2月前
|
安全 Ubuntu Linux
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
60 9
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
|
2月前
|
开发框架 .NET Java
C#集合数据去重的5种方式及其性能对比测试分析
C#集合数据去重的5种方式及其性能对比测试分析
55 10