分布式锁实现原理与最佳实践(5)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 分布式锁实现原理与最佳实践

✪ 4.1.5 重入锁的逻辑

存在对应的锁,就对对应的hash结构的value直接+1,和Java重入锁的逻辑是一致的。

image.png

image.png


4.2 RedLock解决非单体项目的Redis主从架构的锁失效

查看Redis官方文档,对于单节点的Redis ,使用setnx和lua del删除分布式锁是足够的,但是主从架构的场景下:锁先加在一个master节点上,默认是异步同步到从节点,此时master挂了会选择slave为master,此时又可以加锁,就会导致超卖。但是如果使用zookeeper来实现的话,由于zk是CP的,所以CP不存在这样的问题。

Redis文档中给出了RedLock的解决办法,使用redLock真的可以解决吗?

✪ 4.2.1 RedLock 原理

基于客户端的实现,是基于多个独立的Redis Master节点的一种实现(一般为5)。client依次向各个节点申请锁,若能从多数个节点中申请锁成功并满足一些条件限制,那么client就能获取锁成功。它通过独立的N个Master节点,避免了使用主备异步复制协议的缺陷,只要多数Redis节点正常就能正常工作,显著提升了分布式锁的安全性、可用性。

image.png

注意图中所有的节点都是master节点。加锁超过半数成功,就认为是成功。具体流程:

  • 获取锁
  • 获取当前时间T1,作为后续的计时依据;
  • 按顺序地,依次向5个独立的节点来尝试获取锁 SET resource_name my_random_value NX PX 30000;
  • 计算获取锁总共花了多少时间,判断获取锁成功与否;
  • 时间:T2-T1;
  • 多数节点的锁(N/2+1);
  • 当获取锁成功后的有效时间,要从初始的时间减去第三步算出来的消耗时间;
  • 如果没能获取锁成功,尽快释放掉锁。
  • 释放锁
  • 向所有节点发起释放锁的操作,不管这些节点有没有成功设置过。
public String redlock() {
    String lockKey = "product_001";
    //这里需要自己实例化不同redis实例的redisson客户端连接,这里只是伪代码用一个redisson客户端简化了
    RLock lock1 = redisson.getLock(lockKey);
    RLock lock2 = redisson.getLock(lockKey);
    RLock lock3 = redisson.getLock(lockKey);
    /**
     * 根据多个 RLock 对象构建 RedissonRedLock (最核心的差别就在这里)
     */
    RedissonRedLock redLock = new RedissonRedLock(lock1, lock2, lock3);
    try {
        /**
         * waitTimeout 尝试获取锁的最大等待时间,超过这个值,则认为获取锁失败
         * leaseTime   锁的持有时间,超过这个时间锁会自动失效(值应设置为大于业务处理的时间,确保在锁有效期内业务能处理完)
         */
        boolean res = redLock.tryLock(10, 30, TimeUnit.SECONDS);
        if (res) {
            //成功获得锁,在这里处理业务
        }
    } catch (Exception e) {
        throw new RuntimeException("lock fail");
    } finally {
        //无论如何, 最后都要解锁
        redLock.unlock();
    }
    return "end";
}

但是,它的实现建立在一个不安全的系统模型上的,它依赖系统时间,当时钟发生跳跃时,也可能会出现安全性问题。分布式存储专家Martin对RedLock的分析文章,Redis作者的也专门写了一篇文章进行了反驳。

Martin Kleppmann:How to do distributed locking

Antirez:Is Redlock safe?

✪ 4.2.2 RedLock 问题一:持久化机制导致重复加锁

如果是上面的架构图,一般生产都不会配置AOF的每一条命令都落磁盘,一般会设置一些间隔时间,比如1s,如果ABC节点加锁成功,有一个节点C恰好是在1s内加锁,还没有落盘,此时挂了,就会导致其他客户端通过CDE又会加锁成功。

✪ 4.2.3 RedLock 问题二:主从下重复加锁

image.png

除非多部署一些节点,但是这样会导致加锁时间变长,这样比较下来效果就不如zk了。

✪ 4.2.4 RedLock 问题三:时钟跳跃导致重复加锁

C节点发生了时钟跳跃,导致加上的锁没有到达实际的超时时间,就被误以为超时而释放,此时其他客户端就可以重复加锁了。


4.3 Curator

✪ InterProcessMutex 可重入锁的分析

image.png

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
3月前
|
存储 调度
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
分布式锁设计问题之云存储的最佳实践中保障分布式锁的容错能力如何解决
|
6天前
|
NoSQL Java API
分布式锁的实现原理与应用场景,5 分钟彻底搞懂!
本文详细解析了分布式锁的实现原理与应用场景,包括线程锁、进程锁和分布式锁的区别,以及分布式锁的四种要求和三种实现方式(数据库乐观锁、ZooKeeper、Redis)。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式锁的实现原理与应用场景,5 分钟彻底搞懂!
|
4月前
|
监控 NoSQL Java
分布式锁实现原理问题之ZooKeeper的观察器(Watcher)特点问题如何解决
分布式锁实现原理问题之ZooKeeper的观察器(Watcher)特点问题如何解决
|
4月前
|
NoSQL Java Redis
分布式锁实现原理问题之使用Redis的setNx命令来实现分布式锁问题如何解决
分布式锁实现原理问题之使用Redis的setNx命令来实现分布式锁问题如何解决
|
1月前
|
分布式计算 Hadoop 网络安全
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-08-HDFS集群 基础知识 命令行上机实操 hadoop fs 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
28 1
|
1月前
|
存储 机器学习/深度学习 缓存
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
Hadoop-07-HDFS集群 基础知识 分布式文件系统 读写原理 读流程与写流程 基本语法上传下载拷贝移动文件
40 1
|
26天前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
84 0
|
2月前
|
网络协议 安全 Java
分布式(基础)-RMI的原理
分布式(基础)-RMI的原理
|
5月前
|
Prometheus 运维 监控
解锁分布式云多集群统一监控的云上最佳实践
为应对分布式云多集群监控的挑战,阿里云可观测监控 Prometheus 版结合 ACK One,凭借高效纳管与全局监控方案有效破解了用户在该场景的监控运维痛点,为日益增长的业务需求提供了一站式、高效、统一的监控解决方案,实现成本与运维效率的双重优化。助力企业的数字化转型与业务快速增长,在复杂多变的云原生时代中航行,提供了一个强有力的罗盘与风帆。
55764 24
|
3月前
|
Kubernetes Go 数据库
go-zero 分布式事务最佳实践
go-zero 分布式事务最佳实践
下一篇
无影云桌面