30 MAPREDUCE数据压缩

简介: 30 MAPREDUCE数据压缩
概述

这是mapreduce的一种优化策略:通过压缩编码对mapper或者reducer的输出进行压缩,以减少磁盘IO,提高MR程序运行速度(但相应增加了cpu运算负担)。

1.Mapreduce支持将map输出的结果或者reduce输出的结果进行压缩,以减少网络IO或最终输出数据的体积

2.压缩特性运用得当能提高性能,但运用不当也可能降低性能

3.基本原则:

  • 运算密集型的job,少用压缩
  • IO密集型的job,多用压缩
MR支持的压缩编码

Reducer输出压缩

在配置参数或在代码中都可以设置reduce的输出压缩

1、在配置参数中设置

mapreduce.output.fileoutputformat.compress=false
mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.DefaultCodec
mapreduce.output.fileoutputformat.compress.type=RECORD

2、在代码中设置

Job job = Job.getInstance(conf);
FileOutputFormat.setCompressOutput(job, true);
FileOutputFormat.setOutputCompressorClass(job, (Class<? extends CompressionCodec>) Class.forName(""));
Mapper输出压缩

在配置参数或在代码中都可以设置reduce的输出压缩

1、在配置参数中设置

mapreduce.map.output.compress=false
mapreduce.map.output.compress.codec=org.apache.hadoop.io.compress.DefaultCodec

2、在代码中设置:

conf.setBoolean(Job.MAP_OUTPUT_COMPRESS, true);
conf.setClass(Job.MAP_OUTPUT_COMPRESS_CODEC, GzipCodec.class, CompressionCodec.class);
压缩文件的读取

Hadoop自带的InputFormat类内置支持压缩文件的读取,比如TextInputformat类,在其initialize方法中:

public void initialize(InputSplit genericSplit,
                         TaskAttemptContext context) throws IOException {
    FileSplit split = (FileSplit) genericSplit;
    Configuration job = context.getConfiguration();
    this.maxLineLength = job.getInt(MAX_LINE_LENGTH, Integer.MAX_VALUE);
    start = split.getStart();
    end = start + split.getLength();
    final Path file = split.getPath();
    // open the file and seek to the start of the split
    final FileSystem fs = file.getFileSystem(job);
    fileIn = fs.open(file);
    //根据文件后缀名创建相应压缩编码的codec
    CompressionCodec codec = new CompressionCodecFactory(job).getCodec(file);
    if (null!=codec) {
      isCompressedInput = true; 
      decompressor = CodecPool.getDecompressor(codec);
    //判断是否属于可切片压缩编码类型
      if (codec instanceof SplittableCompressionCodec) {
        final SplitCompressionInputStream cIn =
          ((SplittableCompressionCodec)codec).createInputStream(
            fileIn, decompressor, start, end,
            SplittableCompressionCodec.READ_MODE.BYBLOCK);
     //如果是可切片压缩编码,则创建一个CompressedSplitLineReader读取压缩数据
        in = new CompressedSplitLineReader(cIn, job,
            this.recordDelimiterBytes);
        start = cIn.getAdjustedStart();
        end = cIn.getAdjustedEnd();
        filePosition = cIn;
      } else {
    //如果是不可切片压缩编码,则创建一个SplitLineReader读取压缩数据,并将文件输入流转换成解压数据流传递给普通SplitLineReader读取
        in = new SplitLineReader(codec.createInputStream(fileIn,
            decompressor), job, this.recordDelimiterBytes);
        filePosition = fileIn;
      }
    } else {
      fileIn.seek(start);
     //如果不是压缩文件,则创建普通SplitLineReader读取数据
      in = new SplitLineReader(fileIn, job, this.recordDelimiterBytes);
      filePosition = fileIn;
    }


目录
相关文章
|
分布式计算 Hadoop 大数据
Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)
Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)
159 0
|
6月前
|
存储 分布式计算 算法
MapReduce【数据压缩】
MapReduce【数据压缩】
|
6月前
|
分布式计算 Hadoop
Hadoop系列 mapreduce 原理分析
Hadoop系列 mapreduce 原理分析
75 1
|
6月前
|
存储 分布式计算 负载均衡
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
【大数据技术Hadoop+Spark】MapReduce概要、思想、编程模型组件、工作原理详解(超详细)
216 0
|
1月前
|
分布式计算 资源调度 Hadoop
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
Hadoop-10-HDFS集群 Java实现MapReduce WordCount计算 Hadoop序列化 编写Mapper和Reducer和Driver 附带POM 详细代码 图文等内容
84 3
|
5月前
|
分布式计算 Hadoop Java
Hadoop MapReduce编程
该教程指导编写Hadoop MapReduce程序处理天气数据。任务包括计算每个城市ID的最高、最低气温、气温出现次数和平均气温。在读取数据时需忽略表头,且数据应为整数。教程中提供了环境变量设置、Java编译、jar包创建及MapReduce执行的步骤说明,但假设读者已具备基础操作技能。此外,还提到一个扩展练习,通过分区功能将具有相同尾数的数字分组到不同文件。
62 1
|
5月前
|
数据采集 SQL 分布式计算
|
6月前
|
分布式计算 Hadoop Java
Hadoop MapReduce 调优参数
对于 Hadoop v3.1.3,针对三台4核4G服务器的MapReduce调优参数包括:`mapreduce.reduce.shuffle.parallelcopies`设为10以加速Shuffle,`mapreduce.reduce.shuffle.input.buffer.percent`和`mapreduce.reduce.shuffle.merge.percent`分别设为0.8以减少磁盘IO。
68 1
|
6月前
|
分布式计算 并行计算 搜索推荐
Hadoop MapReduce计算框架
【5月更文挑战第10天】HadoopMapReduce计算框架
51 3
下一篇
无影云桌面