【数据结构】二叉树的前中后序遍历(C语言)

简介: 【数据结构】二叉树的前中后序遍历(C语言)

什么是二叉树

[二叉树] 顾名思义就是有两个分支节点的树,不仅如此,除了叶子外的所有节点都具有两个分支节点;

由于结构像一棵倒立的树,顾名思义为二叉树

如下图所示,该图即为一棵野生的二叉树

既然二叉树为树,固然有着和树一样的部分(叶子、根、分支…)

这些也成为了树相关的概念;


树相关的概念

  • 叶子节点或者终端节点

叶子节点或终端节点,顾名思义就是最底端的节点,该节点不存在分支,故被称为叶子;


  • 节点的度

节点的度即为一个节点含有的子树成为该节点的度,如图所示,节点C的度为3;


  • 双亲结点(父节点)

若是一个节点存在子节点则该节点成为该子节点的父节点;如上图所示,A节点既是B的父节点,也是C的父节点;


  • 兄弟节点

具有相同父节点的节点成称为兄弟节点,“双亲结点”中所提到的“A结点既是B的父节点,也是C的父结点”处中的BC节点即为兄弟节点。


  • 树的度

树的度即为一棵树中,最大的节点的度,如“结点的度”中的C节点,该节点为整棵树中度最大的结点为3,故该树的度为3;


  • 树的高度或深度

树中结点的最大层次即为树的高度,如上图所示,树的高度为3;


  • 堂兄弟节点

双亲在同一层的节点互为堂兄弟,如上图所示,E节点和F节点护卫堂兄弟节点;


  • 节点的祖先

从根到节点所经分支上的所有节点,如上图所示,A节点为所有节点的祖先;


  • 子孙

以某节点为根的子树中任意一个节点都称为该节点的子孙

如上图所示,除A以外的所有其他节点都为A节点的子孙;


  • 森林

由m(m>0)棵互不相交的树的集合称为森林;


树的表示形式

树的结构与线性表相比就会更加复杂,既要保存值域,同时也要保存树中节点与节点之间的关系;在树中有许多的表示方法(双亲表示法、孩子表示法、孩子双亲表示法、孩子兄弟表示法等等),在此就不做过多赘述;

既然树的结构如此复杂,那对于真正实际中,树有什么应用呢?大家可以将计算机中的文件夹进行比较,从一个文件夹可以分支出很多个文件夹,文件夹内还可以继续存放文件夹,如此;

在Linux操作系统就应用了文件目录树,目录树的起点是根目录,Linux文件系统中的每一文件在此目录树中的文件名都是独一无二的,因为其包含从根目录开始的完整路径;

同时在很多算法中,都运用到了树;


特殊的二叉树

二叉树在树中也算是一个比较特殊的树种,但在二叉树中也存在着特殊的二叉树,即为完全二叉树与满二叉树

  • 满二叉树
    一个二叉树,如果每一层的节点树都达到最大值,则这个二叉树就是满二叉树;也就是说,如果一个二叉树的层数为k,且节点总数是2^k-1,则它就是满二叉树;
  • 完全二叉树
    完全二叉树是一种效率很高的树,是由满二叉树引申出来的。对于深度为k的,有n个节点的二叉树,当且仅当其每个节点都与深度k的满二叉树中编号从1至n的节点一一对应时称为完全二叉树,同时满二叉树也是一种特殊的完全二叉树。

如何创造出一棵二叉树

在不使用任何算法的前提下若是想得到一棵二叉树可以使用比较简单粗暴的方式:

将各个节点创建并将每个节点连接在一起(该方法适用于任何一种树);

根据树的结构我们可以得知,树既要保存值域,同时也要保存节点之间的关系,又因为为二叉树(每个节点必有两个分支)

假设需要创建一个如图所示的二叉树

在此处可以定义一个结构体,并在结构体内存放结构体指针用来存放左右两个子树,同时创建一个成员变量用来存放所需要存储的值域

typedef char BTDataType;
typedef struct BinaryNode
{
  struct BinaryNode*left;
  struct BinaryNode*right;
  BTDataType a;
}BTNode;

根据图所示可知,A节点的子节点为B、C;

B节点的子节点为D、E;

C节点的子节点为F、G;

int main()
  {
    BTNode q1;
    BTNode q2;
    BTNode q3;
    BTNode q4;
    BTNode q5;
    BTNode q6;
    BTNode q7;
    q1.a = 'A';
    q2.a = 'B';
    q3.a = 'C';
    q4.a = 'D';
    q5.a = 'E';
    q6.a = 'F';
    q7.a = 'G';
    q1.left = &q2;
    q1.right = &q3;
    q2.left = &q4;
    q2.right = &q5;
    q3.left = &q6;
    q3.right = &q7;
    q4.left = q4.right = q5.left = q5.right =q6.left = q6.right = q7.left = q7.right =NULL;
    return 0;
  }

二叉树的遍历

二叉树的遍历分为先序遍历,中序遍历,后序遍历以及层序遍历

为什么会叫先中后,顾名思义,这里的先中后为遍历过程中根节点的访问顺序,一棵树的任意子树都可以看成根节点和子树;

至于层序遍历,即为一层一层的进行访问;

首先设存在一棵二叉树

先序遍历(前序遍历)

先序遍历的遍历方式为:根、左子树、右子树

按照该树可以得出,该树的前序遍历为:A,B,D,E,C,F,G

根据根、左子树、右子树的顺序可知,最先访问的必定是A节点,当A节点访问完即访问左子树,而左子树的根节点为B,B访问结束访问B的左子树,为D,D没有左右子树(为空)故返回访问B的右子树,E与D同理,而后B访问结束放回根节点A并访问A的右树,同理得出该树的前序遍历为 A,B,D,E,C,F,G

既然看图可以得出树的前序遍历,那在代码中如何表示出二叉树的前序遍历,该处只需要使用递归的方式,按照根、左、右的方式即可;

void BinaryTreePreOrder(BTNode*root)
{
  if(root==NULL){//当root为空时则表示该处无节点,即无存储有效数据,若是访问则会造成对空指针的非法解引用
    printf("NULL");
    return ;
  }
  printf("%c ",root->a);//若是不为空则打印出该节点内所存储的有效数据
  BinaryTreePreOrder(root->left);//访问该节点的左子树
  BinaryTreePreOrder(root->right);//访问该节点的右子树
}

如图所示


中序遍历

中序遍历的遍历顺序为:左子树、根、右子树

按照该树可得出中序遍历的结果为:D,B,E,A,F,C,G;

若是用代码方式表示即为:

void BinaryTreeInOrder(BTNode*root)
{
  if(root==NULL){//当root为空时则表示该处无节点,即无存储有效数据,若是访问则会造成对空指针的非法解引用
    printf("NULL");
    return;
  }
  printf("%c ",root->a);//若是不为空则打印出该节点内所存储的有效数据
  BinaryTreeInOrder(root->left);//访问该节点的左子树
  BinaryTreeInOrder(root->right);//访问该节点的右子树
}

后序遍历

中序遍历的遍历顺序为:左子树、右子树、根

按照该树可得出中序遍历的结果为:D,E,B,F,G,C,A;

若是用代码方式表示即为:

void BinaryTreePostOrder(BTNode*root)
{
  if(root==NULL){//当root为空时则表示该处无节点,即无存储有效数据,若是访问则会造成对空指针的非法解引用
    printf("NULL");
    return;
  }
  BinaryTreePostOrder(root->left);//访问该节点的左子树
  BinaryTreePostOrder(root->right);//访问该节点的右子树
  printf("%c ",root->a);//若是不为空则打印出该节点内所存储的有效数据
}

总结

二叉树除了前中后序遍历以外还有一种遍历方式叫作层序遍历,可以使用队列的FIFO特性从而完成该遍历的实现;

在利用递归实现解决二叉树相关问题的过程中,可以根据实际情况选择相应的遍历方式从而以效率较高的方式解决问题;

所有的二叉树问题都可以将其分为两个子问题进行解决;

相关文章
|
15天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
90 9
|
14天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
57 16
|
14天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
63 8
|
17天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
44 4
|
18天前
|
存储 C语言
【数据结构】顺序表(c语言实现)(附源码)
本文介绍了线性表和顺序表的基本概念及其实现。线性表是一种有限序列,常见的线性表有顺序表、链表、栈、队列等。顺序表是一种基于连续内存地址存储数据的数据结构,其底层逻辑是数组。文章详细讲解了静态顺序表和动态顺序表的区别,并重点介绍了动态顺序表的实现,包括初始化、销毁、打印、增删查改等操作。最后,文章总结了顺序表的时间复杂度和局限性,并预告了后续关于链表的内容。
50 3
|
17天前
|
C语言
【数据结构】双向带头循环链表(c语言)(附源码)
本文介绍了双向带头循环链表的概念和实现。双向带头循环链表具有三个关键点:双向、带头和循环。与单链表相比,它的头插、尾插、头删、尾删等操作的时间复杂度均为O(1),提高了运行效率。文章详细讲解了链表的结构定义、方法声明和实现,包括创建新节点、初始化、打印、判断是否为空、插入和删除节点等操作。最后提供了完整的代码示例。
37 0
|
6天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
15 1
|
9天前
|
存储 算法 Java
数据结构的栈
栈作为一种简单而高效的数据结构,在计算机科学和软件开发中有着广泛的应用。通过合理地使用栈,可以有效地解决许多与数据存储和操作相关的问题。
|
12天前
|
存储 JavaScript 前端开发
执行上下文和执行栈
执行上下文是JavaScript运行代码时的环境,每个执行上下文都有自己的变量对象、作用域链和this值。执行栈用于管理函数调用,每当调用一个函数,就会在栈中添加一个新的执行上下文。
|
14天前
|
存储
系统调用处理程序在内核栈中保存了哪些上下文信息?
【10月更文挑战第29天】系统调用处理程序在内核栈中保存的这些上下文信息对于保证系统调用的正确执行和用户程序的正常恢复至关重要。通过准确地保存和恢复这些信息,操作系统能够实现用户模式和内核模式之间的无缝切换,为用户程序提供稳定、可靠的系统服务。
41 4