【数据结构】算法的时间和空间复杂度(下)

简介: 【数据结构】算法的时间和空间复杂度(下)

实例6:计算BinarySearch的时间复杂度

// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}


图解:

7026e008f07c4a9fbcae99b9b2361443.jpg

假设找了x次,那么除了x个2

2^x =N  --> x = log2N  

所以说可以从最后一次查找一直乘2,乘到原数组的长度

实例6基本操作执行最好1次,最坏O(log2N)次,时间复杂度为 O(log2N) ps:logN在算法分析中表示是底数为2,对数为N。有些地方会写成lgN。


实例7: 计算阶乘递归Fac的时间复杂度

计算下面两段代码的时间复杂度

//实例7:
// 计算阶乘递归Fac的时间复杂度?
long long Fac(size_t N)
{
  if (0 == N)
    return 1;
  return Fac(N - 1) * N;
}
long long Fac(size_t N)
{
  if (0 == N)
    return 1;
  for (size_t i = 0; i < N; i++)
  {
  }
  return Fac(N - 1) * N;
}


图解:


左边的每一次函数调用里面的for循环语句(如果有其它循环语句也会算上)的执行次数,左边的1表示它是常数次,而不是1次(就说如果函数里面没什么循环语句,有几个if语句,那时间复杂度也是O(1))。

右边的简单来说就说有N+1个函数调用,而每一个函数调用里面的循环语句都执行了N+1次,所以应该把每次的递归调用的函数里面的循环语句都加起来。

cc8cc720cb07473387f0b4841ea64e38.png

补充的点:

时间是加起来的,不是乘起来的就比如说上图的return Fac(N-1)*N:表示的是上一次的结果乘N,但是执行次数也是一次,因为这个地方的*对于计算机来说仅仅是一个指令。时间复杂度算的是这个程序在走的过程中这个指令的执行次数。


实例8:计算斐波那契递归Fib的时间复杂度

// 计算斐波那契递归Fib的时间复杂度?
long long Fib(size_t N)
{
  if (N < 3)
    return 1;
  return Fib(N - 1) + Fib(N - 2);
}


图解:

0587c5efe8614bb6a33adfffbe9f8401.png

执行次数之和符合等比数列:使用错位相减法

b7f32deaeab2431192f41fbe8c1f4b7f.png

这题可以这样理解:

关于那个三角形,白色的区域在N越大的情况下,就会远远大于黑色区域,而时间复杂度是用来计算大致计算某个数学函数是的量级的,给它分一个级别,所以可以看作是满项的状态下计算,然后执行次数之和构成等比数列,用大O渐进表示法去算时间复杂度为O(2^N)。


3.算法的空间复杂度


空间复杂度也是一个数学表达式,是对一个算法在运行过程中 临时占用存储空间大小的量度 。

空间复杂度不是程序占用了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是 变量的个数 。

空间复杂度计算规则基本跟实践复杂度类似,也使用 大O渐进表示法 。

注意: 函数运行时所需要的栈空间 ( 存储参数、局部变量、一些寄存器信息等 ) 在编译期间已经确定好了,因 此 空间复杂度 主要通过函数在运行时候显式申请的 额外空间 来确定。


实例1:计算BubbleSort的空间复杂度

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
    assert(a);
  for (size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for (size_t i = 1; i < end; ++i)
    {
      if (a[i - 1] > a[i])
      {
        Swap(&a[i - 1], &a[i]);
        exchange = 1;
      }
    }
    if (exchange == 0)
      break;
  }
}


因为这里只创建了一个end,exchange,i三个变量,只计算变量个数,不管变量类型也不算空间具体的字节数,而且都是在循环里创建的,所以空间复杂度为O(1)

而关于形参int *a,和int n,它们不会被算在空间复杂度中。


实例2:计算Fibonacci的空间复杂度

// 计算Fibonacci的空间复杂度?
// 返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
 if(n==0)
 return NULL;
 long long * fibArray = (long long *)malloc((n+1) * sizeof(long long));
 fibArray[0] = 0;
 fibArray[1] = 1;
 for (int i = 2; i <= n ; ++i)
 {
 fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
 }
 return fibArray;
}


空间复杂度,它计算的是你在这个函数内部开辟了多少额外空间,如果是常数个的话,就是O1,如果开辟的大小不确定,一般就是O(N)。

所以说空间复杂度为O(N)。


实例3:计算阶乘递归Fac的空间复杂度

// 计算阶乘递归Fac的空间复杂度?
long long Fac(size_t N)
{
 if(N == 0)
 return 1;
 return Fac(N-1)*N;
}


图解:

6937dc0d5770446c9670cab34844e64a.png

递归调用了N层每次调用建立一个栈帧,每个栈帧使用了常数个空间O(1)

由于这里调用了N个函数,同时没有返回,所以合起来就是O(N)


实例4:计算斐波那契递归Fib的空间复杂度(两个递归)

// 计算斐波那契递归Fib的空间复杂度?
long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 return Fib(N-1) + Fib(N-2);
}


前言:

空间的销毁不是整没了那块空间,是归还使用权,归还给操作系统

因为内存空间是属于操作系统进程的,比如说让你malloc一块空间,就获得这块空间的使用权,free一下就把空间使用权还给操作系统了

ede2e45cb7984f91860eb0756e183b25.png

时间是一去不复返时间是累积计算的,空间是可以重复利用不累积计算

简单的说,右边的函数和左边的函数共用一个栈帧。

代码运行:栈是向下生长的,调用Func1和Func2相当于共用一块空间,因为Func1销毁之后,到Func2创建,位置还是那个位置,地址也是那个地址。

c82f73783ff74c49853ff34160cdc540.png

因为主函数的a和Func1的a在不同栈帧里面,所以可以同名。

实例4递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

调用时,建立栈帧;

返回时,销毁。(归还给操作系统)


4.常见复杂度对比


一般算法常见的复杂度如下:

31e2288a8f3644eb8325ca9b4afd41bf.png

图解:

b3811f6dbf7e4fb898ea6813fa3b6036.png

本章完,如有不足之处,欢迎大佬指正。

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
49 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
116 4
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
47 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
110 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
62 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
65 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
57 0
|
2月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
59 0