【数据结构】算法的时间和空间复杂度(上)

简介: 【数据结构】算法的时间和空间复杂度(上)

1.什么是算法?


算法:

算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为 输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化成输出结果。

常见应用于排序/二分查找


算法特点:

1.有穷性。一个算法应包含有限的操作步骤,而不能是无限的。事实上“有穷性”往往指“在合理的范围之内”。如果让计算机执行一个历时1000年才结束的算法,这虽然是有穷的,但超过了合理的限度,人们不把他视为有效算法。

2. 确定性。算法中的每一个步骤都应当是确定的,而不应当是含糊的、模棱两可的。算法中的每一个步骤应当不致被解释成不同的含义,而应是十分明确的。也就是说,算法的含义应当是唯一的,而不应当产生“歧义性”。

3. 有零个或多个输入、所谓输入是指在执行算法是需要从外界取得必要的信息。

4. 有一个或多个输出。算法的目的是为了求解,没有输出的算法是没有意义的

5.有效性。 算法中的每一个 步骤都应当能有效的执行。并得到确定的结果。


1.1算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间 ( 内存 ) 资源 。因此 衡量一个算法的好坏,一般是从时间空间两个维度来衡量的 ,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的 运行快慢 ,而空间复杂度主要衡量一个算法运行 所需要的额外空间(需要多少内存) 。在计算 机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。


2.算法的时间复杂度


2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中, 算法的时间复杂度是一个函数( 数学函数式,不是c语言的那些嵌套函数) ,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的 执行次数 ,为算法 的时间复杂度。


计算Func1中++count语句总共执行了多少次

让我们来实践一下吧:

// 请计算一下Func1中++count语句总共执行了多少次?
void Func1(int N)
{
  int count = 0;
  for (int i = 0; i < N; ++i)
  {
    for (int j = 0; j < N; ++j)
    {
      ++count;
    }
  }
  for (int k = 0; k < 2 * N; ++k)
  {
    ++count;
  }
  int M = 10;
  while (M--)
  {
    ++count;
  }
  printf("%d\n", count);
}


时间复杂度的函数式(也就是Func1 执行的基本操作次数):

                                              F(N)=N^2+2N+10

但是这个表达式,太准确,太细节,太繁琐了。时间复杂度不是准确地计算出这个数学函数式的执行次数,而是给它分一个级别,它到底是哪个量级的。

举例:就像马云和马化腾,不需要关心他们的账户具体几分几毛,只需要知道他们是富豪就行了。


准确值F(N)=N^2+2N+10
估算值O(N^2)

N = 10

F(N) = 130 100

N = 100

F(N) = 10210

10000

N = 1000

F(N) = 1002010

1000000


结论1:

N越大,后面项对结果影响越小,也就是说 阶数最高(N^2)的那一项就是影响最大的,保留最高阶项。

结论2:

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数。

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

只要用大O这个东西来表示就说明它是一个估算的值。


2.2 O的渐进表示法

O符号(Big O notation):是用于描述函数渐进行为的数学符号。


推导大O阶方法:

1、用常数1取代运行时间中的所有加法常数

2 、在修改后的运行次数函数中, 只保留最高阶项 。

3 、如果最高阶项存在且不是 1 ,则 去除 与这个项目 相乘的常数 。得到的结果就是大 O 阶。


有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N数组中搜索一个数据x:

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到


在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)


2.3常见时间复杂度计算举例

实例1:执行2N+10次

// 计算Func2的时间复杂度?
void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}


基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)


实例2:执行M+N次

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}


实例 2 基本操作执行了 M+N 次,有两个未知数 M 和 N ,时间复杂度为 O(N+M)

不能说N无限大了,M就不重要了。除非说会给出一个关系:

N远大于M,则时间复杂度为O(N)

M远大于N,则时间复杂度为O(M)

M等于N或二者相差不大时,则时间复杂度为O(M+N)


实例3:执行了100000000次

void Func4(int N)
{
  int count = 0;
  for (int k = 0; k < 100000000; ++k)
  {
    ++count;
  }
  printf("%d\n", count + N);
}
int main()
{
  Func4(100000);
  Func4(1);
  return 0;
}


执行:实际上cpu的速度是非常快的,相差的执行次数可以忽略,所以时间复杂度依旧为O(1)

O(1)不是代表1次,而是代表常数次,就算k<10亿,它也是O(1)

我们平时能写到的常数最大也就是40多亿左右(整型能表示的范围),cpu是可以承受的。

437f33e619a94c4e899d51c8ac8e0c7d.png

实例3基本操作执行了100000000次,通过推导大O阶方法,时间复杂度为 O(1)


实例4:计算strchr的时间复杂度

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, int character );


这是关于strchr的模拟实现

#include<stdio.h>
#include<assert.h>
char* my_strchr(const char* str, const char ch)
{
  assert(str);
  const char* dest = str;
  while (dest != '\0' && *dest != ch)
  {
    dest++;
  }
  if (*dest == ch)
    return (char*)dest;
  return NULL;
}
int main()
{
  char* ret = my_strchr("hello", 'l');
  if (ret == NULL)
    printf("不存在");
  else
    printf("%s\n", ret);
  return 0;
}

27d510fccb8e4671ab8d5bcefd777169.png

我的理解就是strchr和strstr的区别:就是strstr是输入一个字符串在主串中查找,而strchr是输入一个字符,然后在主串中查找。这个链接有关于strstr的知识点:http://t.csdn.cn/NEaip

若查找失败,返回NULL。查找成功则返回首字符的地址,然后打印的时候一直到'\0'结束

所以说:

指明了这个数组的长度然后去查找它的时间复杂度才是O(1),长度不明确的话,长度就是N,那么需要递归N次,时间复杂度就是O(N)

实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)


实例5:计算BubbleSort的时间复杂度

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}


图解:

e2db82c7a2924317a918831264fc302e.png

那么比较的次数构成等差数列:用等差数列求和公式得到最后的执行次数是F(N)=(N-1)*N/2;

这题关于循环的不是说有两层循环嵌套就直接判断它的时间复杂度是O(N^2),因为如果比较次数是已知的(外层循环n<10,内层循环n<1000000)那就是O(1) ,而且冒泡排序会有优化版本,在有序的情况下,他的时间复杂度是O(N),只走外层循环。

实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最坏,时间复杂度为 O(N^2)

相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
57 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
143 4
|
15天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
50 20
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
2月前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
2月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
115 23
|
2月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
64 20
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
67 1
|
2月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
61 0
|
2月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
66 0