C++算法:有向图访问计数的原理及实现

简介: C++算法:有向图访问计数的原理及实现

题目

现有一个有向图,其中包含 n 个节点,节点编号从 0 到 n - 1 。此外,该图还包含了 n 条有向边。

给你一个下标从 0 开始的数组 edges ,其中 edges[i] 表示存在一条从节点 i 到节点 edges[i] 的边。

想象在图上发生以下过程:

你从节点 x 开始,通过边访问其他节点,直到你在 此过程 中再次访问到之前已经访问过的节点。

返回数组 answer 作为答案,其中 answer[i] 表示如果从节点 i 开始执行该过程,你可以访问到的不同节点数。

2 <= n <= 100000

无自环。

原理分析

如果只有一个连通区域,则有且只有一环。反证法:假定没有环,除源点外,还可以到达n个端点,共n+1个端点,与共有n个端点重复。假定有x个环,则不重复端点数为:1+n-x。当且仅当x为1是,不重复端点数为n。

当有多个连通区域时,任何一个连通区域都有且只有一个环。下面分两步来证明:一,此连通区域必定有环。二,此区域不存在两个或更多的环。

假定此区域的一条边为i0->edges[i0],edges[i0]简称为i1。如果没有环, 则edges[i1](简称为i2)也在此连通区域,edges[i2](简称i3)也在此连通区域,i4.... 。此连通区域的点数无限,和端点数小于等于n矛盾。

由于出度为1,所以进入环后,无法离开环。自然没第二个环。

编码思路

根据拓扑排序,发现那些点在环上。

根据并集查找获取各连通区域。

统计各连通区域在环上的点数。

求环上各点可以到达的点数,就是此环长度(端点数)。

DFS非环上各点可以到达的点数。就是到环的距离+此环的长度。

拓扑排序和并集查找已经封装,可以直接使用。

核心源码

class CTestTS : public CTopSort
{
public:
    // 通过 CTopSort 继承
    virtual void OnDo(int pre, int cur) override
    {
        m_vCycle[cur] = false;
    }
    vector<int> m_vCycle;
};
class Solution {
public:
    vector<int> countVisitedNodes(vector<int>& edges) {
        m_c = edges.size();
        vector<vector<int>> vNeiB(m_c);
        CUnionFind uf(m_c);
        for (int i = 0; i < edges.size(); i++)
        {
            vNeiB[i].emplace_back(edges[i]);
            uf.Union(i, edges[i]);
        }
        m_ts.m_vCycle.assign(m_c, true);        
        m_ts.Init(vNeiB);
        m_vDis.resize(m_c, -1);
        //环可能处于不同的联通区域
        std::unordered_map<int, int> mRegionNode;//各联通区域环的端点数
        for (int i = 0; i < m_c; i++)
        {
            if (m_ts.m_vCycle[i])
            {
                mRegionNode[uf.GetConnectRegionIndex(i)]++;
            }
        }
        for (int i = 0; i < m_c; i++)
        {
            if (m_ts.m_vCycle[i])
            {
                m_vDis[i] = mRegionNode[uf.GetConnectRegionIndex(i)];
            }
        }
        for (int i = 0; i < m_c; i++)
        {
            dfs(i, edges);
        }
        return m_vDis;
    }
    int dfs(int cur,const vector<int>& edges)
    {
        if (-1 != m_vDis[cur])
        {
            return  m_vDis[cur];
        }
        return m_vDis[cur] = dfs(edges[cur], edges) + 1;
    }
    vector<int> m_vDis;
    CTestTS m_ts;
    int m_c;
};

测试用代码

int main()
{
    vector<int> edges = { 1,2,3,4,0 };
    //vector<int> edges = { 1,2,0,0 };
    Solution slu;
    auto res = slu.countVisitedNodes(edges);
}

测试环境

Win10 +VS2022 + C++17

相关下载

源码:可直接运行

https://download.csdn.net/download/he_zhidan/88388717


其它

视频课程

如果你觉得复杂,想从简单的算法开始,可以学习我的视频课程。

https://edu.csdn.net/course/detail/38771

我的其它课程

https://edu.csdn.net/lecturer/6176

测试环境

win7 VS2019 C++17 或Win10 VS2022 Ck++17

相关下载

算法精讲《闻缺陷则喜算法册》doc版

https://download.csdn.net/download/he_zhidan/88348653

相关文章
|
1天前
|
自然语言处理 算法 搜索推荐
分词算法的基本原理及应用
分词算法的基本原理及应用
|
5天前
|
存储 算法 C语言
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
二分查找算法的概念、原理、效率以及使用C语言循环和数组的简单实现
|
4天前
|
算法 数据中心 C++
基于C++雪花算法工具类Snowflake -来自chatGPT
基于C++雪花算法工具类Snowflake -来自chatGPT
9 1
|
5天前
|
存储 算法 调度
【数据结构与算法】详解循环队列:基于数组实现高效存储与访问
【数据结构与算法】详解循环队列:基于数组实现高效存储与访问
|
9天前
|
算法 数据处理 C++
C++一分钟之-迭代器与算法
【6月更文挑战第21天】C++ STL的迭代器统一了容器元素访问,分为多种类型,如输入、输出、前向、双向和随机访问。迭代器使用时需留意失效和类型匹配。STL算法如查找、排序、复制要求特定类型的迭代器,注意容器兼容性和返回值处理。适配器和算法组合增强灵活性,但过度使用可能降低代码可读性。掌握迭代器和算法能提升编程效率和代码质量。
23 3
|
10天前
|
机器学习/深度学习 算法 BI
机器学习笔记(一) 感知机算法 之 原理篇
机器学习笔记(一) 感知机算法 之 原理篇
|
9天前
|
机器学习/深度学习 数据采集 算法
KNN算法原理及应用(一)
**KNN算法**是一种监督学习的分类算法,适用于解决分类问题。它基于实例学习,无需训练过程,当新样本到来时,通过计算新样本与已有训练样本之间的距离,找到最近的K个邻居,然后根据邻居的类别进行多数表决(或加权表决)来预测新样本的类别。K值的选择、距离度量方式和分类决策规则是KNN的关键要素。KNN简单易懂,但计算复杂度随样本量增加而增加,适用于小规模数据集。在鸢尾花数据集等经典问题上表现良好,同时能处理多分类任务,并可应用于回归和数据预处理中的缺失值填充。
KNN算法原理及应用(一)
|
13天前
|
机器学习/深度学习 算法 Python
【算法】深入浅出爬山算法:原理、实现与应用
【算法】深入浅出爬山算法:原理、实现与应用
22 3
|
3天前
|
存储 算法 安全
深入解析RSA算法原理及其安全性机制
深入解析RSA算法原理及其安全性机制
|
3天前
|
存储 算法 安全
MD5哈希算法:原理、应用与安全性深入解析
MD5哈希算法:原理、应用与安全性深入解析