MySQL数据库第十四课--------sql优化---------层层递进1

本文涉及的产品
云数据库 RDS SQL Server,独享型 2核4GB
云数据库 RDS MySQL Serverless,0.5-2RCU 50GB
简介: MySQL数据库第十四课--------sql优化---------层层递进

插播小知识

1.python导入sys ,sys,path.append(文件路径)的效果跟import的效果相似都可以导入python脚本文件

2.to_csv(文件名称)保存到csv文件, to_excel(文件名称)保存到xlsx文件中

SQL优化

这里的SQL优化主要是针对于数据量十分巨大时候的处理。在具体的环境,我们是需要逐步调试SQL语句,以保证运行的性能。

查询

星号(*)

尽量避免使用select * 进行全字段的查询,为啥这么说呢?,前面我们用这个命令查询是因为数据量少,数据量很大的话一使用这个就会看不清楚,满屏的数值,想想就很可怕,所以我们尽量使用写字段的方法

select a.id,a.`name`,a.age from 学生表格1 As a;

使用*还会降低性能,我们可以理解一下,当判断出所有字段后,还要再往后判断一次是否这个表还有字段,而直接写出字段就不会判断,节省了资源,如果不理解,我们可以想象一下,数据非常大,每多做出一次判断都会影响MySQL的性能

这样写既可以让我们知道表格里面有哪些字段,

去重(尽量使用group by)

select count(1) from employees  where first_name='Georgi';
select
    count(1) as 剩下的Georgi数量
from
    (
        select 
         DISTINCT first_name as first_name 
        from 
            employees
        where first_name='Georgi'
    ) as a
where
    a.first_name='Georgi';

上面代码就是使用distinct去重

而我们使用group by时

select 
    first_name
    ,count(1)
from
    employees
where first_name='Georgi'
group by first_name;

最终结果是一样的

如果使用python的逻辑去理解的话,distinct 是判断是否存在,


上面每个方框和下面数据对应一下

如果全为1则说明这两条数据相同,distinct 就是要一一比较然后再判断,而group by就是只要方框内的内容只要不相同就会停止判断

使用 distinct * 进行去重,如果数据量过大,会导致数据库运行效率很慢。

在SQL语句的查询中,中心点在于进一步缩小查询范围,然后找到满足条件的数据。所以在很多时

候,我们可以用冗长的SQL语句来节省数据库的运行时间。

select
id
,name
,age
from table_name
where age = 50
or age = 60
select
id
,name
,age
from table_name
where age = 50
union all
select
id
,name
,age
from table_name
where age = 60

简单理解就是我们来计算,计算机执行,我们花费时间写更多的代码来换取更多的内存空间,运行效率就会得到提升

关联查询 join

# 正常SQL数据查询获取
sql = '''
select
a.emp_no
,a.age
,a.gender
,b.dept_no
from new_employees a
join dept_emp b
on a.emp_no = b.emp_no
and b.dept_no = 'd001'
'''
Data_Dw().mysql_to_df(sql)

这里的意思就是new_employees和dept_emp通过a.emp_no = b.emp_no进行关联,关联出b.dept_no = ‘d001’

如果我们先从dept_emp表格里获取20条数据,获取主键值,再从表employees找出,

每次找出5条

sql_1 = """
select 
    emp_no
from
    dept_emp
limit 20
"""
retur = Data_Dw().mysql_to_df(sql_1)
print(type(retur))
print(list(retur))
print(len(retur))
retur
print(retur['emp_no'])
print(list(retur['emp_no']))
NPB = 5
retur_list = list(retur['emp_no'])
retur_list
while 1:
    if len(retur_list) <= NPB:
        #获取表头
        d_type = tuple(retur)[0]
        #获取内容
        sql_2 = f"""select  * from  employees where {d_type} in{tuple(retur_list)}"""
        data = Data_Dw().mysql_to_df(sql_2)
        print(data)
        break
    else:
        # 获取表头
        d_type = tuple(retur)[0]
        # 获取5个数据 并输出
        pop_list = list()
        while len(retur_list) > 0:
            if len( pop_list)< NPB:
                 pop_list.append(retur_list.pop())
            else:
                pop_tuple = tuple( pop_list)
                sql_3 = f"""select * from  employees where {d_type} in {pop_tuple} """
                data = Data_Dw().mysql_to_df(sql_3)
                print(data)
                break

108836304a714ac591a79dadc6a7fc8e.png

第一框代码是使用join的,原理相当于是一次性从许多数据 找出一部分数据,

而第二框是先在ept_emp表格里获取需要的数据,然后拆分成许多小块,然后每个小块在表employees找出,

这样写的好处是啥呢?我们想一想,我们进会场,一次进1000人,现场就会管理很好,如果一下子全部人进入,就会很混乱

在mysql里如果一下子查询许多数据就会给内存增加很大的压力。

通过python实现两张表格的关联查询

原理就是使用sql语句分别查出需要关联的内容,然后通过python关联在一起,这样可以节约mysql内存

sql_4 = """
select 
    emp_no
    ,dept_no
from
    dept_emp
limit 20
"""
data_1 = Data_Dw().mysql_to_df(sql_4)
data_1
sql_4 = """
select 
    emp_no
    ,birth_date
from
     employees 
limit 20
"""
data_2 = Data_Dw().mysql_to_df(sql_4)
data_2
result=data_1.merge(data_2,how='inner',on='emp_no')
result["birth_date"].head(1)

merge函数构成:

参数介绍:

left:参与合并的左侧DataFrame;

right:参与合并的右侧DataFrame;

how:连接方式,有inner、left、right、outer,默认为inner;

on:指的是用于连接的列索引名称,必须存在于左右两个DataFrame中,如果没有指定且其他参数也没有指定,则以两个DataFrame列名交集作为连接键;

left_on:左侧DataFrame中用于连接键的列名,这个参数左右列名不同但代表的含义相同时非常的有 用;

right_on:右侧DataFrame中用于连接键的列名;

left_index:使用左侧DataFrame中的行索引作为连接键;

right_index:使用右侧DataFrame中的行索引作为连接键;

sort:默认为True,将合并的数据进行排序,设置为False可以提高性能;

suffixes:字符串值组成的元组,用于指定当左右DataFrame存在相同列名时在列名后面附加的后缀名称,默认为(‘_x’, ‘_y’);

copy:默认为True,总是将数据复制到数据结构中,设置为False可以提高性能;

indicator:显示合并数据中数据的来源情况。

result[“birth_date”].head(1) #查看前1条数据

删除 delete

delete from table_name where 条件

这是我们删除语句,但是这种往往不适合删除数据量很大的数据,由于服务器的运行性能的限制,我们就要考虑分段删除了,我们可以通过python语句来操控删除,

方法1

sql_5 = """
select 
    name
from 数据库1.学生表格1
where 
    name = '大佬'
"""
data_2 = Data_Dw().mysql_to_df(sql_5)
len(data_2)
while 1;
 #判断是否还有数据
    if len(data_2) == 0:
        break
    else:
        sql_6 = """
            delete from
                数据库1.学生表格1;
            where 
                name = '大佬'
        """
        data_3 = Data_Dw().mysql_to_df(sql_5)
        data_3

这个方法缺点就是每次查询都是在数据库里面进行的,很大程度上让数据库的负担加重了,如果数据量小还行,如果数据量大那就不适合了

方法2

sql_6= """
select 
    name
from 数据库1.学生表格1
where 
    name = '大佬'
"""
data_3 = Data_Dw().mysql_to_df(sql_6)
data_3["name"]
# # 获取表头
# list(data_3)
# data_list = list(data_3["name"])
# sa_tuple = list()
# CNB = 10
# while 1:
#     if (len(list(data_3["name"]))) < CNB:
#         sql_7 = f""" delete from 数据库1.学生表格1 where {list(data_3)[0]} in {tuple(data_3["name"])}"""
#         print(Data_Dw().mysql_to_df(sql_7))
#         break
#     else:
#         while 1:
#             if len(sa_tuple) < CNB:
#                 sa_tuple.append(data_list.pop())
#             else:
#                 sql_8 = f""" delete from 数据库1.学生表格1 where {list(data_3)[0]} in {tuple(sa_tuple)}"""
#                 print(Data_Dw().mysql_to_df(sql_8))
#                 break

对比以上两个方法:

方法一:

通过多次查询数据库,先确定是否存在需要删除的数据,然后进行删除。主要适用于服务器或者数据库硬件性能不足,但是本身使用频繁较低的情况。

方法二:

先圈选需要删除的数据,然后通过循环进行数据的删除。减少了数据库查询的次数,将更多的运算逻辑运用于python中。主要适用于服务器性能充沛,但是数据库已经被其他任务过多占用的情况。


这两种方法都比直接一次性删除全部数据要快很多

相关实践学习
基于CentOS快速搭建LAMP环境
本教程介绍如何搭建LAMP环境,其中LAMP分别代表Linux、Apache、MySQL和PHP。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
15天前
|
存储 缓存 关系型数据库
百度搜索:蓝易云【MySQL之优化SELECT语句】
通过以上优化方法,可以显著提高MySQL SELECT语句的查询性能和效率。
23 5
|
15天前
|
SQL 缓存 关系型数据库
MySQL技能完整学习列表6、查询优化——3、查询缓存——4、SQL优化技巧
MySQL技能完整学习列表6、查询优化——3、查询缓存——4、SQL优化技巧
27 0
|
15天前
|
SQL 关系型数据库 MySQL
MySQL技能完整学习列表3、SQL语言基础——1、SQL(Structured Query Language)简介——2、基本SQL语句:SELECT、INSERT、UPDATE、DELETE
MySQL技能完整学习列表3、SQL语言基础——1、SQL(Structured Query Language)简介——2、基本SQL语句:SELECT、INSERT、UPDATE、DELETE
32 0
|
2天前
|
SQL 存储 关系型数据库
MySQL索引(二)索引优化方案有哪些
MySQL索引(二)索引优化方案有哪些
22 0
|
4天前
|
SQL 存储 关系型数据库
sql数据库的相关概念与底层介绍
sql数据库的相关概念与底层介绍
28 0
|
3天前
|
SQL 数据库 索引
sql深度优化
sql深度优化
11 1
|
4天前
|
SQL 存储 关系型数据库
MySQL索引原理以及SQL优化
MySQL索引原理以及SQL优化
36 0
|
15天前
|
监控 关系型数据库 MySQL
MySQL技能完整学习列表12、性能优化——1、性能指标和监控——2、优化查询和数据库结构——3、硬件和配置优化
MySQL技能完整学习列表12、性能优化——1、性能指标和监控——2、优化查询和数据库结构——3、硬件和配置优化
56 0
|
15天前
|
SQL 安全 关系型数据库
MySQL技能完整学习列表3、SQL语言基础——3、SQL运算符和函数
MySQL技能完整学习列表3、SQL语言基础——3、SQL运算符和函数
22 0
|
15天前
|
SQL 关系型数据库 MySQL
Mysql SQL的一些特殊用法记录
1、查询group by having 中having不起作用,及解决
11 0