三、内联函数
3、1 内联函数的引出
我们知道函数的调用是有所消耗的,需要开辟栈帧。为了提高效率呢,我们有时候可以选择用宏函数来替代函数调用。例如下面代码就可以用宏函数替代:
//int add(int x, int y) //{ // return (x + y) * 10; //} #define ADD(x,y) (((x)+(y))*10) int main() { //int ret = add(1, 2); //宏函数 int ret = ADD(1, 2); cout << ret << endl; return 0; }
注意,在使用宏函数时,一定不要吝啬括号。如果少一些必要的括号的话,会出现预想不到的错误。因为宏是在编译时进行完全的替换。
但是宏能替换所有的函数吗?答案是不可能的。稍微复杂的函数,用宏来替换就十分复杂。我们再来看一下宏的优缺点,先看优点:
增强代码的复用性;
提高性能;
我们再来看一下宏的缺点:
不方便调试宏。(因为预编译阶段进行了替换);
导致代码可读性差,可维护性差,容易误用;
没有类型安全的检查 。
宏的替换并不是很好,且在大多情况下用宏来替换的复杂度很高、可读性差。那还有什么方法呢?C++中引出了内联函数,我们接着往下看。
3、2 内联函数详解
3、2、1 内联函数的概念
以inline修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,没有函数调用建立栈帧的开销,内联函数提升程序运行的效率。
3、2、2 内联函数的特性
内联函数有以下特性:
inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用,缺陷:可能会使目标文件变大,优势:少了调用开销,提高程序运行效率。
inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现),不是递归、频繁调用的函数采用inline修饰,否则编译器会忽略inline特性。下图为《C++prime》第五版关于inline的建议:
inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,就没有函数地
址了,链接就会找不到。
// F.h #include <iostream> using namespace std; inline void f(int i); // F.cpp #include "F.h" void f(int i) { cout << i << endl; } // main.cpp #include "F.h" int main() { f(10); return 0; } // 链接错误:main.obj : error LNK2019: 无法解析的外部符号 "void __cdecl f(int)" (? //f@@YAXH@Z),该符号在函数 _main 中被引用
四、auto关键字(C++11)
4、1 auto简介
在早期C/C++中auto的含义是:使用auto修饰的变量,是具有自动存储器的局部变量,但遗憾的是一直没有人去使用它,大家可思考下为什么?
C++11中,标准委员会赋予了auto全新的含义即:auto不再是一个存储类型指示符,而是作为一个新的类型指示符来指示编译器,auto声明的变量必须由编译器在编译时期推导而得。
我们看auto的使用方法,如下:
#include<iostream> using namespace std; int TestAuto() { return 10; } int main() { int a = 10; auto b = a; auto c = 'a'; auto d = TestAuto(); cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; cout << typeid(d).name() << endl; //auto e; 无法通过编译,使用auto定义变量时必须对其进行初始化 return 0; }
运行结果如下:
从这个用例中,我们可大致了解auto的用法及其作用,但是自动推出类型的意义大吗?上述并不能很好的体现出来,我们看下面的一个例子
#include <string> #include <map> int main() { std::map<std::string, std::string> m{ { "apple", "苹果" }, { "orange", "橙子" }, {"pear","梨"} }; std::map<std::string, std::string>::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
通过上面的代码,我们可以看出来随着程序越来越复杂,程序中用到的类型也越来越复杂。含义不明确又很容易导致出错。我们第一反应是可以通过typedef给类型取别名,比如:
#include <string> #include <map> typedef std::map<std::string, std::string> Map; int main() { Map m{ { "apple", "苹果" },{ "orange", "橙子" }, {"pear","梨"} }; Map::iterator it = m.begin(); while (it != m.end()) { //.... } return 0; }
但是auto从不能解决所有的情况。在编程时,常常需要把表达式的值赋值给变量,这就要求在声明变量的时候清楚地知道表达式的类型。然而有时候要做到这点并非那么容易,因此C++11就引出了auto。
注意:使用auto定义变量时必须对其进行初始化,在编译阶段编译器需要根据初始化表达式来推导auto的实际类型。因此auto并非是一种“类型”的声明,而是一个类型声明时的“占位符”,编译器在编译期会将auto替换为变量实际的类型。
4、2 auto的使用细节
4、2、1 auto与指针和引用结合起来使用
用auto声明指针类型时,用auto和auto*没有任何区别,但用auto声明引用类型时则必须加&。具体我们可看下面代码:
int main() { int x = 10; auto a = &x; auto* b = &x; auto& c = x; //引用 cout << typeid(a).name() << endl; cout << typeid(b).name() << endl; cout << typeid(c).name() << endl; *a = 20; *b = 30; c = 40; return 0; }
运行结果如下:
4、2、2 在同一行定义多个变量
当在同一行声明多个变量时,这些变量必须是相同的类型,否则编译器将会报错,因为编译器实际只对第一个类型进行推导,然后用推导出来的类型定义其他变量。我们可结合下面代码一起理解一下:
void TestAuto() { auto a = 1, b = 2; auto c = 3, d = 4.0; // 该行代码会编译失败,因为c和d的初始化表达式类型不同 }
4、3 auto不能推导的场景
以下几点都是auto不能推到的场景:
- auto不能作为函数的参数;
// 此处代码编译失败,auto不能作为形参类型,因为编译器无法对a的实际类型进行推导 void TestAuto(auto a) {}
auto不能直接用来声明数组;
void TestAuto() { int a[] = {1,2,3}; auto b[] = {4,5,6}; //错误 }
- 为了避免与C++98中的auto发生混淆,C++11只保留了auto作为类型指示符的用法;
- auto在实际中最常见的优势用法就是跟以后会讲到的C++11提供的新式for循环,还有lambda表达式等进行配合使用。