C++入门5——C/C++动态内存管理(new与delete)

简介: C++入门5——C/C++动态内存管理(new与delete)

1. 一图搞懂C/C++的内存分布

说明:

1. 栈区(stack):在执行函数时,函数内局部变量的存储单元都可以在栈上创建,函数执行结 束时这些存储单元自动被释放。栈内存分配运算内置于处理器的指令集中,效率很高,但是 分配的内存容量有限。 栈区主要存放运行函数而分配的局部变量、函数参数、返回数据、返回地址等。

2. 堆区(heap):一般由程序员分配释放, 若程序员不释放,程序结束时可能由OS回收 。分配方式类似于链表。

3. 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放。

4. 代码区:存放函数体(类成员函数和全局函数)的二进制代码。

2. 存在动态内存分配的原因

现在我们最朗朗上手的内存开辟方式有:

    int a = 10;//在栈空间上开辟4个字节的空间
  int arr[100] = { 0 };//在栈空间上开辟100×4个字节的空间

上述两种方法开辟空间的方式有两个特点:

1. 空间开辟大小是固定的;

2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。

但是对于空间的需求,不仅仅是上述的情况。有时我们需要的空间大小在程序运行时才能知道。

其如果比我们开辟的空间大,程序会不会报错呢?如果比我们开辟的空间小,那又会不会造成内存浪费,降低运行效率呢?

所以这种静态的内存开辟方式就不能满足我们的需求了,那该如何来解决呢?

这时动态的内存开辟或许就可以满足我们的需求。

3. C语言中的动态内存管理方式

C语言中的动态内存管理方式为malloc、calloc、realloc、free函数的使用,具体请看:详解C/C++动态内存函数(malloc、free、calloc、realloc)

4. C++内存管理方式

我们说过,C++是兼容C语言的,所以C语言的内存管理方式在C++中可以继续使用,但有些地方就无能为力,而且使用起来比较麻烦,因此C++又提出了自己的内存管理方式:通过new和delete操作符进行动态内存管理。

了解C++的类与对象之后,我们知道了内置类型和自定义类型,我们似乎可以发现,在学习了C++的很多知识后,好像很大一部分篇幅都在介绍处理自定义类型的情况,这些也恰巧可以体现C++面向对象的原因,所以,对于new和delete我们也应该分为内置类型与自定义类型来讨论。

4.1 new/delete操作内置类型

new/delete操作内置类型与malloc、calloc、realloc、free函数除了用法上,其他方面没有任何区别,用法也完全可以照猫画虎,不过确实new/delete更为方便:

void test()
{
  // ①动态申请一个int类型的空间
  //malloc
  //int* ptr1 = (int*)malloc(sizeof(int));
  //new
  int* ptr1 = new int;
 
  // ②动态申请一个int类型的空间并初始化为10
  //malloc
  /*int* ptr2 = (int*)malloc(sizeof(int));
  if (ptr2 == NULL)
  {
    perror("malloc");
    exit(-1);
  }
  *ptr2 = 10;*/
  //new
  int* ptr2 = new int(10);
 
  //③ 动态申请10个int类型的空间
  //calloc
  /*int* ptr3 = (int*)calloc(10, sizeof(int));
  if (ptr3 == NULL)
  {
    perror("calloc");
    exit(-1);
  }*/
  //new
  int* ptr3 = new int[10];
 
  //④动态申请10个int类型的空间,并初始化成1~10
  //直接演示new:
  int* ptr4 = new int[10]{ 1,2,3,4,5,6,7,8,9,10 };
  //(如果未初始化完全,其余默认初始化为0)
 
    //free
  /*free(ptr1);
  ptr1 = NULL;*/
 
  //delete
  delete ptr1;
  delete ptr2;
  delete[] ptr3;
  delete[] ptr4;
}

(注意:申请和释放单个元素的空间,使用new和delete操作符,申请和释放连续的空间,使用 new[]和delete[],要匹配起来使用。)


4.2 new/delete操作自定义类型

我们已经说了,new/delete与malloc、calloc、realloc、free除了用法上,其他方面没有区别,那既然已经有了后者,为什么还要再引入new/delete呢?仅仅是为了用法上更方便一些吗?

答案当然不是的,没有任何区别仅仅是针对内置类型来说的,我们在学习操作符重载时就发现,+、-、*、/ 这些运算符对于自定义类型并不能直接拿来用,需要加以重载我们才可以使用。

malloc、calloc、realloc、free这些函数也是同样的道理,所以针对自定义类型,new与delete就应运而生了。

那么,我们就跟着new/delete操作内置类型的用法照猫画虎,来试一下自定义类型A:

#include <iostream>
using namespace std;
 
class A
{
public:
  //构造函数
  A(int a = 0)
    :_a(a)
  {
    cout << "调用了构造函数  " << this << endl;
  }
 
  //析构函数
  ~A()
  {
    cout << "调用了析构函数  " << this << endl;
  }
 
private:
  int _a;
};
 
int main()
{
  //动态申请1个A类型的空间并初始化为1
  A* a1 = new A(1);
  delete a1;
  return 0;
}

运行结果:

从运行结果来看:

new/delete 和 malloc/free最大区别是 new/delete对于【自定义类型】除了开空间还会调用构造函数和析构函数。

所以我们可以说:

new的本质:开空间+调用构造函数初始化;

delete的本质:调用析构函数+释放空间。


另外,熟悉一下用new对自定义类型开多个空间:

int main()
{
  //动态申请3个A类型的空间并初始化为1~3
  //方法①:有名对象
  /*A a1(1);
  A a2(2);
  A a3(3);
  A* aa1 = new A[3]{ a1,a2,a3 };
  delete[] aa1;*/
 
  //方法②:匿名对象
  A* aa2 = new A[3]{ A(1),A(2),A(3) };
  delete[] aa2;
 
  //方法③:巧用构造函数的隐式类型转换
  A* aa3 = new A[3]{ 1,2,3 };
  delete[] aa3;
  return 0;
}

(本篇完)

相关文章
|
5月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
197 26
|
10月前
|
存储 程序员 编译器
玩转C++内存管理:从新手到高手的必备指南
C++中的内存管理是编写高效、可靠程序的关键所在。C++不仅继承了C语言的内存管理方式,还增加了面向对象的内存分配机制,使得内存管理既有灵活性,也更加复杂。学习内存管理不仅有助于提升程序效率,还有助于理解计算机的工作原理和资源分配策略。
|
6月前
|
C语言 C++
c与c++的内存管理
再比如还有这样的分组: 这种分组是最正确的给出内存四个分区名字:栈区、堆区、全局区(俗话也叫静态变量区)、代码区(也叫代码段)(代码段又分很多种,比如常量区)当然也会看到别的定义如:两者都正确,记那个都选,我选择的是第一个。再比如还有这样的分组: 这种分组是最正确的答案分别是 C C C A A A A A D A B。
117 1
|
9月前
|
存储 Linux C语言
C++/C的内存管理
本文主要讲解C++/C中的程序区域划分与内存管理方式。首先介绍程序区域,包括栈(存储局部变量等,向下增长)、堆(动态内存分配,向上分配)、数据段(存储静态和全局变量)及代码段(存放可执行代码)。接着探讨C++内存管理,new/delete操作符相比C语言的malloc/free更强大,支持对象构造与析构。还深入解析了new/delete的实现原理、定位new表达式以及二者与malloc/free的区别。最后附上一句鸡汤激励大家行动缓解焦虑。
|
10月前
|
安全 C语言 C++
彻底摘明白 C++ 的动态内存分配原理
大家好,我是V哥。C++的动态内存分配允许程序在运行时请求和释放内存,主要通过`new`/`delete`(用于对象)及`malloc`/`calloc`/`realloc`/`free`(继承自C语言)实现。`new`分配并初始化对象内存,`delete`释放并调用析构函数;而`malloc`等函数仅处理裸内存,不涉及构造与析构。掌握这些可有效管理内存,避免泄漏和悬空指针问题。智能指针如`std::unique_ptr`和`std::shared_ptr`能自动管理内存,确保异常安全。关注威哥爱编程,了解更多全栈开发技巧。 先赞再看后评论,腰缠万贯财进门。
450 0
|
10月前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
6月前
|
人工智能 机器人 编译器
c++模板初阶----函数模板与类模板
class 类模板名private://类内成员声明class Apublic:A(T val):a(val){}private:T a;return 0;运行结果:注意:类模板中的成员函数若是放在类外定义时,需要加模板参数列表。return 0;
171 0
|
6月前
|
存储 编译器 程序员
c++的类(附含explicit关键字,友元,内部类)
本文介绍了C++中类的核心概念与用法,涵盖封装、继承、多态三大特性。重点讲解了类的定义(`class`与`struct`)、访问限定符(`private`、`public`、`protected`)、类的作用域及成员函数的声明与定义分离。同时深入探讨了类的大小计算、`this`指针、默认成员函数(构造函数、析构函数、拷贝构造、赋值重载)以及运算符重载等内容。 文章还详细分析了`explicit`关键字的作用、静态成员(变量与函数)、友元(友元函数与友元类)的概念及其使用场景,并简要介绍了内部类的特性。
262 0
|
8月前
|
编译器 C++ 容器
【c++11】c++11新特性(上)(列表初始化、右值引用和移动语义、类的新默认成员函数、lambda表达式)
C++11为C++带来了革命性变化,引入了列表初始化、右值引用、移动语义、类的新默认成员函数和lambda表达式等特性。列表初始化统一了对象初始化方式,initializer_list简化了容器多元素初始化;右值引用和移动语义优化了资源管理,减少拷贝开销;类新增移动构造和移动赋值函数提升性能;lambda表达式提供匿名函数对象,增强代码简洁性和灵活性。这些特性共同推动了现代C++编程的发展,提升了开发效率与程序性能。
304 12
|
9月前
|
设计模式 安全 C++
【C++进阶】特殊类设计 && 单例模式
通过对特殊类设计和单例模式的深入探讨,我们可以更好地设计和实现复杂的C++程序。特殊类设计提高了代码的安全性和可维护性,而单例模式则确保类的唯一实例性和全局访问性。理解并掌握这些高级设计技巧,对于提升C++编程水平至关重要。
180 16