算法:动态规划的入门理解

简介: 算法:动态规划的入门理解

从本篇开始总结的是动态规划的一些内容,动态规划是算法中非常重要的一个版块,因此也是学习算法中的一个重点,在学习动态规划前应当要把动态规划的基础知识学习一下

算法原理

动态规划既然是一个新的算法,这个名字也是新名字,那么就要首先明确这个算法的名字代表什么含义

动态规划是什么?

动态规划其实就是dp表中的值所表示的含义

那什么又是dp表?

dp表是解决这类问题中必须要使用的一个内容,通常是借助vector来表示

dp表怎么写出来?

一般来说题目要求中会有一些提示,同时在分析问题的过程中,如果遇到了分析的过程中有重复的子问题,也可以借助这个逻辑写出一个状态转移方程,利用这个状态转移方程就可以填写到dp表

状态转移方程

状态转移方程就是在动态规划中根据一部分提示找到dp表的填入方法,再根据这个方法就可以借助dp表解决问题,因此状态转移方程是解决问题的关键

题目解析

首先用一个比较简单的题目来上手动态规划

第n个泰波那契数列

对于这个题来说,可以用上面的动态规划的方法来处理:

首先创建一个dp表,再从题目中找到状态转移方程,再利用状态转移方程写入dp表,再利用dp表求出要找的数据

class Solution 
{
public:
    int tribonacci(int n) 
    {
        // 处理边界
        if(n==0)
        {
            return 0;
        }
        if(n==1 || n==2)
        {
            return 1;
        }
        // 创建dp表
        vector<int> dp(n+1);
        // 初始化dp表
        dp[0]=0;
        dp[1]=1;
        dp[2]=1;
        //填入dp表
        for(int i=3;i<=n;i++)
        {
            dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
        }
        // 返回值
        return dp[n];
    }
};

三步问题

分析问题:

假设现在有1个台阶,那么小孩跳到这个台阶的方法有1种,直接从地面走到第一个台阶上

假设现在有2个台阶,那么小孩跳到这个台阶的方法有2种,第一种从地面直接走到第二个台阶上,第二种是小孩从地面走到第一个台阶,再从第一个台阶走到第二个台阶上

假设现在有3个台阶,那么小孩跳到这个台阶的方法有4种,第一种直接跳到第三个台阶上,第二种先跳到第一个台阶,再从第一个台阶向第三个台阶跳,而从第一个台阶向第三个台阶跳又有两种,参考有2个台阶的方案,那么总共第二种方法有2种,第三种小孩跳到第二个台阶,再从第二个台阶跳到第三个台阶,因此总共有四种方法

假设现在有4个台阶,那么小孩跳到第四个台阶的方法总共有7种,先让小孩走到第一个台阶,再从第一个台阶走到第四个台阶即可,而小孩走到第一个台阶的方法有1种;也可以先让小孩走到第二个台阶,再从第二个台阶走到第四个台阶,而小孩走到第二个台阶的方法有2种;先让小孩走到第三个台阶,再从第三个台阶直接到第四个台阶,而直接让小孩走到第四个台阶的方法有4种,因此上面的这些总计是7种

假设现在有5个台阶,那么小孩跳到第五个台阶的方法有13种,先让小孩跳到第二个台阶,再从第二个台阶直接到第五个台阶…

因此规律就找到了,其实就是一个斐波那契数列的变形问题,利用上面的例题的思路就可以解决这个问题

class Solution 
{
public:
    int waysToStep(int n) 
    {
      vector<long long> dp(n+4);
      dp[0]=0;
      dp[1]=1;
      dp[2]=2;
      dp[3]=4;
      for(int i=4;i<=n;i++)
      {
          dp[i]=dp[i-1]+dp[i-2]+dp[i-3];
          dp[i] %= 1000000007;
      }
      return dp[n];
    }
};

使用最小花费爬楼梯

此题也是动态规划中的一个典型题,这里从两个角度来看这道题

从最开始的介绍中可以知道,对于动态规划的问题来说,关键是dp[i]的意义和状态转移方程,在解决问题的过程中要优先对这两个部分进行思考和解决,那么两个不同的dp[i]的角度来看这个题

首先从第一个角度来看:

如果这里的dp[i]表示的是,上到第i个台阶需要花费多少钱:

那么可以这样思考问题,要知道上到第i个台阶需要多少钱,就必然要知道上到第i-1个台阶要花多少钱,再用这个钱加上上第i-1个台阶要花多少钱,由于一次可以上两个台阶,因此也要知道上到第i-2个台阶需要多少钱和上这个台阶需要多少钱,再比较一下从第i-1个台阶上划算还是从第i-2个台阶上划算,比较后就可以得到dp[i]的值,因此状态转移方程就很容易得到了

dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])

此时注意一下边界初始化问题:在第0和第1个台阶是不需要花钱的,于是初始化为0即可,代码也可以很好的实现出来

class Solution 
{
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        vector<int> dp(cost.size()+1);
        dp[0]=0;
        dp[1]=0;
        for(int i=2;i<=cost.size();i++)
        {
            dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]);
        }
        return dp[cost.size()];
    }
};

以上为第一种思考的方式,dp[i]对应的意义还有其他,这里还可以理解为从第i个位置上到最顶上需要的花费,因此这里也可以借助这个意义来解决

那如果要求从第i个台阶上到顶端要花多少钱,需要知道从第i个台阶一次上一个台阶还是一次上两个台阶比较划算,因此这里又需要知道i+1和i+2的值,根据这两个的值决定一次上一个台阶还是上两个台阶,因此状态转移方程也可以得出来了:

dp[i]=min(dp[i+1]+cost[i],dp[i+2]+cost[i]);

那么代码的实现也可以得出:

class Solution 
{
public:
    int minCostClimbingStairs(vector<int>& cost) 
    {
        int n=cost.size();
        vector<int> dp(n);
        dp[n-1]=cost[n-1];
        dp[n-2]=cost[n-2];
        for(int i=n-3;i>=0;i--)
        {
            dp[i]=min(dp[i+1]+cost[i],dp[i+2]+cost[i]);
        }
        return min(dp[0],dp[1]);
    }
};


相关文章
|
2月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
69 1
|
3月前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
2月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
1月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
50 2
|
2月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
99 2
动态规划算法学习三:0-1背包问题
|
1月前
|
机器学习/深度学习 算法 Python
机器学习入门:理解并实现K-近邻算法
机器学习入门:理解并实现K-近邻算法
36 0
|
2月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
79 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
2月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
169 0
动态规划算法学习二:最长公共子序列
|
2月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)