【数据结构】手撕八大排序算法(上)

简介: 目录 1.排序的概念: 2.八大排序的思路及其细节2.1直接插入排序

作者:一个喜欢猫咪的的程序员

专栏:《数据结构》

喜欢的话:世间因为少年的挺身而出,而更加瑰丽。                                  ——《人民日报》


目录

1.排序的概念:

2.八大排序的思路及其细节

2.1直接插入排序

2.2希尔排序

2.3选择排序:

2.4堆排序

2.5冒泡排序

2.6快速排序:

2.6.1hoare版本(递归版本)

2.6.2三数取中

2.6.3挖坑法

2.6.4前后指针法:

2.6.5非递归写法:

2.7归并排序

2.7.1递归写法:

2.7.2非递归写法:

2.8计数排序



1.排序的概念:

排序就是把集合中的元素按照一定的次序排序在一起。一般来说有升序排列和降序排列2种排序,在算法中有八大基本排序:

算法的优良主要从4个方面进行评测:

  • 1.时间复杂度
  • 2.空间复杂度
  • 3.适用场景
  • 4.稳定性  

2.八大排序的思路及其细节

2.1直接插入排序

动图演示:

 当前n-1个已是有序的情况下,将第n个元素插入进去排序,插入到顺序正确的位置。

将此过程一直重复的话可以可以完成上图的情况。(以数组a为例,来观察一下各个过程)

int a[] = {9,1,2,5,7,4,8,6,3,5};

思路:

用一个变量end=i,利用tmp记录下end位置的下一个位置a[end+1]的值,如果

a[end]>tmp,a[end]=tmp然后end--。最后将tmp的值赋给end+1的位置。

考虑极端情况:

当数组有n个数时,下标最大值为n-1

当end=n-1时,end+1=n(此时造成了越界)

void InsertSort(int* a, int n)
{//插入排序
  for (int i = 0; i < n - 1; i++)
  {
    int end = i;
    int tmp = a[end + 1];
    while (end >= 0)
    {
      if (a[end] > tmp)
      {
        a[end + 1] = a[end];
        end--;
      }
      else
      {
        break;
      }
    }
    a[end+1] = tmp;//防止end=-1
  }
}

时间复杂度: O(N^2) 空间复杂度:O ( 1 )


2.2希尔排序

对插入排序的时间复杂度进行分析,得出了以下结论:

  •  普通插入排序的时间复杂度最坏情况下为O(N2),此时待排序列为逆序,或者说接近逆序。
  •  普通插入排序的时间复杂度最好情况下为O(N),此时待排序列为升序,或者说接近升序。

动图演示:

待排序列先进行一次预排序,让待排序列变为接近有序的(接近需要的顺序),然后再进行一次直接插入排序。

因为直接插入排序前的待排序列已是接近有序的情况了,因此时间复杂度为O(N),只要控制预排序阶段的时间复杂度不超过O(N^2),那么整体的时间复杂度就比直接插入排序的时间复杂度低了。

希尔排序法又称缩小增量法。希尔排序法的基本思想是:

设定一个gap=n/2,将相距gap位置的两个数作比较,如果前面的小于后面交换以此循环

问题:为什么gap=n/2?

answer:gap越大,数据挪动得越快;gap越小,数据挪动得越慢。前期让gap较大,可以让数据更快得移动到自己对应的位置附近,减少挪动次数。

注:一般情况下,取序列的一半作为增量,然后依次减半,直到增量为1(也可自己设置)。

5f596f95dbc942bc9eefbb813c822ef2.png

思路:

单趟排序:当a[end]>a[end+gap]时,将end的值赋给end+gap后end-=gap,在end<0时退出循环

当有n个数时,因为比较是相距gap距离的两个数比较,因此循环次数要小于n-gap次

gap=n每次取半直到最终取到gap=1时,每次取半都是一次一次单趟排序

void ShellSort(int* a, int n)
{
  int gap = n;
  while (gap > 1)
  {
    gap = gap/ 2;
    for (int i = 0; i < n - gap; i++)//i++并排运算
    {
      int end = i;
      int tmp = a[end + gap];
      while (end >= 0)
      {
        if (a[end] > tmp)
        {
          //Swap(&a[end], &a[end + gap]);
          a[end + gap] = a[end];
          end -= gap;
        }
        else
             break;
      }
      a[end + gap] = tmp;//防止end<0
    }
  }
}

希尔排序详细的时间复杂度和空间复杂度:

《数据结构(C语言版)》--- 严蔚敏

《数据结构-用面相对象方法与C++描述》--- 殷人昆

时间复杂度:O ( NlogN )   空间复杂度:O ( 1 )

平均时间复杂度:O ( N^ 1.3 )


2.3选择排序:

动图演示:

思路:

设两个下标begin和end,begin初始化为0,end初始化为n-1

设置最大值和最小值的下标让他们指向begin

当a[i]的值比a[begin]小,更新min的值,当a[i]的值比a[begin]大,更新max的值

循环走完后确认了最小值的下标,将a[begin]和a[min]进行交换,以及a[end]和a[max交换]

极端情况:


当最大值为数组的第一个时,max=min

时间复杂度:O(N^2)                                         空间复杂度:O(1)

void SelectSort(int* a, int n)
{
  int begin = 0;
  int end = n - 1;
  while (begin < end)
  {
    int mini = begin;
    int maxi = begin;
    for (int i = begin+1; i <=end; i++)
    {
      if (a[i] < a[mini])
      {
        mini = i;
      }
      if (a[i] > a[maxi])
      {
        maxi = i;
      }
    }
    Swap(&a[mini], &a[begin]);
    if (maxi == begin)
    {
      maxi = mini;
    }
    Swap(&a[maxi], &a[end]);
    begin++;
    end--;
  }
}

2.4堆排序

堆排序:(以小堆为例)

堆的分类:

1.升序or降序
2.大堆or小堆

void test2()
{//堆排序
  int array[] = { 27,15,19,18,28,34,65,49,25,37 };
  Heapsort(array, sizeof(array) / sizeof(array[0]));
  for (int i = 0; i < sizeof(array) / sizeof(array[0]); i++)
  {
    printf("%d ", array[i]);
  }
  printf("\n");
}

Heapsort函数(堆排序):

int array[] = { 27,15,19,18,28,34,65,49,25,37 };

需将这个数组进行大堆排列,分为两种调整形式:向上调整和向下调整。、

向上调整和向下调整的思想可以参考我的例外一篇博客:http://t.csdn.cn/UD52X

void Ajustup(HPDataType*a, int child)
{//N*logN
    assert(a);
    //int child = n - 1;
    while (child > 0)
    {
        int parent = (child - 1) / 2;
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            child = parent;
        }
        else
        {
            break;
        }
    }
}
void Ajustdown(HPDataType* a, int n,int parent)
{//O(N)
    assert(a);
    int child = 2 * parent+1;
    while (child<n)
    {
        if (child + 1 < n && a[child] < a[child + 1])//  <假设左子树大
        {
            child++;
        }
        if (a[child] > a[parent])//>大堆,<为小堆
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = child * 2 + 1;
        }
        else
        {
            break;
        }
    }
}

向上调整和向下调整具体的时间复杂度是多少呢?

向下调整具体的时间复杂度:

假设树高为h

第h层,有2^(h-1)个节点,需要向下调整0次(直接不算,从第h-1层开始算)。

第h-1层,有2^(h-2)个节点,需要向下调整1层。

第h-2层,有2^(h-3)个节点,需要向下调整2层。

......

第4层,有2^3个节点,需要向下调整h-4层。

第3层,有2^2个节点,需要向下调整h-3层。

第2层,有2^1个节点,需要向下调整h-2层。

第1层,有2^0个节点,需要向下调整h-1层。

005619af4b584ae884a80054c7400b68.gif

当h高的次数,最多调整层数为:

F(h)=2^0*(h-1)+2^1*(h-2)+2^2*(h-3)+...+2^(h-3)*2+2^(h-2)*1+2^(h-1)*0       ——①

2*F(h)=2^1*(h-1)+2^2*(h-2)+2^3*(h-3)+...+2^(h-2)*2+2^(h-1)*1+2^(h)*0       ——②

有错位相减②-①可得:

F(h)=-2^0*(h-1)+2^1+2^2+....+2^(h-2)+2^(h-1)

F(h)=2^h-1-h                                                                                                           ——③

当树高为h时,节点总个数N为:

N=2^0+2^1+...+2^(h-2)+2^(h-1)

N=2^h-1                                                                                                                        ——④

有④可得:h=log(N+1)                                                                                            ——⑤

综合③④⑤可得:

F(N)=N-log(N+1)

  • 因此时间复杂度为O(N)

向上调整具体的时间复杂度:

在一层,需要向上调整0次

第二层,向上调整1次

第三层,向上调整2次

...

第h-1层,向上调整h-2次

第h层,向上调整h-1次

F(h)=2^1*1+2^2*2+....+2^(h-1)*(h-1)。

由错位相减可得:

F(N)=2N(1-log(N+1))。

时间复杂度为O(N*logN)

如何实现堆排序

显然向下调整优于向上调整。

先利用Ajustdown排序好数组,然后再用交换Ajustdown实现小堆。

void Heapsort(int*a,int n)//堆排序
{//向上调整
  for (int i = 1; i <n; i++)
  {
    Ajustup(a, i);
  }
  //向下调整
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    Ajustdown(a, n, i);
  }
  int end = n - 1;
  while (end>0)
  {
    Swap(&a[0], &a[end]);
    Ajustdown(a, end, 0);
    end--;
  }
  //N*logN
}
void test2()
{//堆排序
  int array[] = { 27,15,19,18,28,34,65,49,25,37 };
  Heapsort(array, sizeof(array) / sizeof(array[0]));
  for (int i = 0; i < sizeof(array) / sizeof(array[0]); i++)
  {
    printf("%d ", array[i]);
  }
  printf("\n");
}

2.5冒泡排序

动图演示:

代码:

void BubbleSort(int* a, int n)
{
  for (int j = 0; j < n; j++)
  {
    for (int i = 1; i < n - j; i++)
    {
      if (a[i] < a[i - 1])
      {
        Swap(&a[i],& a[i - 1]);
      }
    }
  }
}


相关文章
|
27天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
41 1
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
95 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
28天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
28天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
1月前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
103 23
|
1月前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
60 20
|
1月前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
53 0
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
46 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
1月前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
43 0
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
46 4

热门文章

最新文章