数仓学习---11、数仓开发之DWS层

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: 数仓学习---11、数仓开发之DWS层

                                                                                     

                       星光下的赶路人star的个人主页

                      大鹏一日同风起,扶摇直上九万里


文章目录


  1. 1.1.7 交易域用户粒度退单最近一日汇总表


1、数仓开发之DWS


设计要点:

1、DWS层的设计参考指标体系

2、DWS层的数据储存格式为ORC列示储存+snappy压缩

3、DWS层表命名规范为dws_数据域_统计粒度_业务过程_统计周期(1d/nd/td)

注意:1d表示最近一日,nd表示最近n日,td表示历史至今


1.1 最近一日汇总表


1.1.1 交易域用户商品粒度订单最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_sku_order_1d;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_1d
(
    `user_id`                   STRING COMMENT '用户id',
    `sku_id`                    STRING COMMENT 'sku_id',
    `sku_name`                  STRING COMMENT 'sku名称',
    `category1_id`              STRING COMMENT '一级分类id',
    `category1_name`            STRING COMMENT '一级分类名称',
    `category2_id`              STRING COMMENT '一级分类id',
    `category2_name`            STRING COMMENT '一级分类名称',
    `category3_id`              STRING COMMENT '一级分类id',
    `category3_name`            STRING COMMENT '一级分类名称',
    `tm_id`                     STRING COMMENT '品牌id',
    `tm_name`                   STRING COMMENT '品牌名称',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_num_1d`              BIGINT COMMENT '最近1日下单件数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_sku_order_1d partition(dt)
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count_1d,
    order_num_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        dt,
        user_id,
        sku_id,
        count(*) order_count_1d,
        sum(sku_num) order_num_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0.0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0.0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from dwd_trade_order_detail_inc
    group by dt,user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2020-06-14'
)sku
on od.sku_id=sku.id;

(2)每日装载

insert overwrite table dws_trade_user_sku_order_1d partition(dt='2020-06-15')
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count,
    order_num,
    order_original_amount,
    activity_reduce_amount,
    coupon_reduce_amount,
    order_total_amount
from
(
    select
        user_id,
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(split_original_amount) order_original_amount,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount,
        sum(split_total_amount) order_total_amount
    from dwd_trade_order_detail_inc
    where dt='2020-06-15'
    group by user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2020-06-15'
)sku
on od.sku_id=sku.id;


1.1.2 交易域用户商品粒度退单最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_sku_order_refund_1d;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_refund_1d
(
    `user_id`                    STRING COMMENT '用户id',
    `sku_id`                     STRING COMMENT 'sku_id',
    `sku_name`                   STRING COMMENT 'sku名称',
    `category1_id`               STRING COMMENT '一级分类id',
    `category1_name`             STRING COMMENT '一级分类名称',
    `category2_id`               STRING COMMENT '一级分类id',
    `category2_name`             STRING COMMENT '一级分类名称',
    `category3_id`               STRING COMMENT '一级分类id',
    `category3_name`             STRING COMMENT '一级分类名称',
    `tm_id`                      STRING COMMENT '品牌id',
    `tm_name`                    STRING COMMENT '品牌名称',
    `order_refund_count_1d`      BIGINT COMMENT '最近1日退单次数',
    `order_refund_num_1d`        BIGINT COMMENT '最近1日退单件数',
    `order_refund_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日退单金额'
) COMMENT '交易域用户商品粒度退单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_refund_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_sku_order_refund_1d partition(dt)
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_refund_count,
    order_refund_num,
    order_refund_amount,
    dt
from
(
    select
        dt,
        user_id,
        sku_id,
        count(*) order_refund_count,
        sum(refund_num) order_refund_num,
        sum(refund_amount) order_refund_amount
    from dwd_trade_order_refund_inc
    group by dt,user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2020-06-14'
)sku
on od.sku_id=sku.id;

(2)每日装载

insert overwrite table dws_trade_user_sku_order_1d partition(dt='2020-06-15')
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count,
    order_num,
    order_original_amount,
    activity_reduce_amount,
    coupon_reduce_amount,
    order_total_amount
from
(
    select
        user_id,
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(split_original_amount) order_original_amount,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount,
        sum(split_total_amount) order_total_amount
    from dwd_trade_order_detail_inc
    where dt='2020-06-15'
    group by user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from dim_sku_full
    where dt='2020-06-15'
)sku
on od.sku_id=sku.id;


1.1.3 交易域用户粒度订单最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_order_1d;
CREATE EXTERNAL TABLE dws_trade_user_order_1d
(
    `user_id`                   STRING COMMENT '用户id',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_num_1d`              BIGINT COMMENT '最近1日下单商品件数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日下单活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '下单优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域用户粒度订单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_trade_user_order_1d partition(dt)
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_original_amount),
    sum(nvl(split_activity_amount,0)),
    sum(nvl(split_coupon_amount,0)),
    sum(split_total_amount),
    dt
from dwd_trade_order_detail_inc
group by user_id,dt;

(2)每日装载

insert overwrite table dws_trade_user_order_1d partition(dt='2020-06-15')
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_original_amount),
    sum(nvl(split_activity_amount,0)),
    sum(nvl(split_coupon_amount,0)),
    sum(split_total_amount)
from dwd_trade_order_detail_inc
where dt='2020-06-15'
group by user_id;


1.1.4 交易域用户粒度加购最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_cart_add_1d;
CREATE EXTERNAL TABLE dws_trade_user_cart_add_1d
(
    `user_id`           STRING COMMENT '用户id',
    `cart_add_count_1d` BIGINT COMMENT '最近1日加购次数',
    `cart_add_num_1d`   BIGINT COMMENT '最近1日加购商品件数'
) COMMENT '交易域用户粒度加购最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_cart_add_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_trade_user_cart_add_1d partition(dt)
select
    user_id,
    count(*),
    sum(sku_num),
    dt
from dwd_trade_cart_add_inc
group by user_id,dt;

(2)每日装载

insert overwrite table dws_trade_user_cart_add_1d partition(dt='2020-06-15')
select
    user_id,
    count(*),
    sum(sku_num)
from dwd_trade_cart_add_inc
where dt='2020-06-15'
group by user_id;


1.1.5 交易域用户粒度支付最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_payment_1d;
CREATE EXTERNAL TABLE dws_trade_user_payment_1d
(
    `user_id`           STRING COMMENT '用户id',
    `payment_count_1d`  BIGINT COMMENT '最近1日支付次数',
    `payment_num_1d`    BIGINT COMMENT '最近1日支付商品件数',
    `payment_amount_1d` DECIMAL(16, 2) COMMENT '最近1日支付金额'
) COMMENT '交易域用户粒度支付最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_payment_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_trade_user_payment_1d partition(dt)
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount),
    dt
from dwd_trade_pay_detail_suc_inc
group by user_id,dt;

(2)每日装载

insert overwrite table dws_trade_user_payment_1d partition(dt='2020-06-15')
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount)
from dwd_trade_pay_detail_suc_inc
where dt='2020-06-15'
group by user_id;


1.1.6 交易域省份粒度订单最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_province_order_1d;
CREATE EXTERNAL TABLE dws_trade_province_order_1d
(
    `province_id`               STRING COMMENT '用户id',
    `province_name`             STRING COMMENT '省份名称',
    `area_code`                 STRING COMMENT '地区编码',
    `iso_code`                  STRING COMMENT '旧版ISO-3166-2编码',
    `iso_3166_2`                STRING COMMENT '新版版ISO-3166-2编码',
    `order_count_1d`            BIGINT COMMENT '最近1日下单次数',
    `order_original_amount_1d`  DECIMAL(16, 2) COMMENT '最近1日下单原始金额',
    `activity_reduce_amount_1d` DECIMAL(16, 2) COMMENT '最近1日下单活动优惠金额',
    `coupon_reduce_amount_1d`   DECIMAL(16, 2) COMMENT '最近1日下单优惠券优惠金额',
    `order_total_amount_1d`     DECIMAL(16, 2) COMMENT '最近1日下单最终金额'
) COMMENT '交易域省份粒度订单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_province_order_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_province_order_1d partition(dt)
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d,
        dt
    from dwd_trade_order_detail_inc
    group by province_id,dt
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from dim_province_full
    where dt='2020-06-14'
)p
on o.province_id=p.id;

(2)每日装载

insert overwrite table dws_trade_province_order_1d partition(dt='2020-06-15')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from dwd_trade_order_detail_inc
    where dt='2020-06-15'
    group by province_id
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from dim_province_full
    where dt='2020-06-15'
)p
on o.province_id=p.id;


1.1.7 交易域用户粒度退单最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_order_refund_1d;
CREATE EXTERNAL TABLE dws_trade_user_order_refund_1d
(
    `user_id`                STRING COMMENT '用户id',
    `order_refund_count_1d`  BIGINT COMMENT '最近1日退单次数',
    `order_refund_num_1d`    BIGINT COMMENT '最近1日退单商品件数',
    `order_refund_amount_1d` DECIMAL(16, 2) COMMENT '最近1日退单金额'
) COMMENT '交易域用户粒度退单最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_refund_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table dws_trade_user_order_refund_1d partition(dt)
select
    user_id,
    count(*) order_refund_count,
    sum(refund_num) order_refund_num,
    sum(refund_amount) order_refund_amount,
    dt
from dwd_trade_order_refund_inc
group by user_id,dt;

(2)每日装载

insert overwrite table dws_trade_user_order_refund_1d partition(dt='2020-06-15')
select
    user_id,
    count(*),
    sum(refund_num),
    sum(refund_amount)
from dwd_trade_order_refund_inc
where dt='2020-06-15'
group by user_id;


1.1.8 流量域会话粒度页面浏览最近一日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_traffic_session_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_session_page_view_1d
(
    `session_id`     STRING COMMENT '会话id',
    `mid_id`         string comment '设备id',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `version_code`   string comment 'app版本号',
    `channel`        string comment '渠道',
    `during_time_1d` BIGINT COMMENT '最近1日访问时长',
    `page_count_1d`  BIGINT COMMENT '最近1日访问页面数'
) COMMENT '流量域会话粒度页面浏览最近1日汇总表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_session_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_traffic_session_page_view_1d partition(dt='2020-06-14')
select
    session_id,
    mid_id,
    brand,
    model,
    operate_system,
    version_code,
    channel,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2020-06-14'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;

1.1.9 流量域访客页面粒度页面浏览最近1日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_traffic_page_visitor_page_view_1d;
CREATE EXTERNAL TABLE dws_traffic_page_visitor_page_view_1d
(
    `mid_id`         STRING COMMENT '访客id',
    `brand`          string comment '手机品牌',
    `model`          string comment '手机型号',
    `operate_system` string comment '操作系统',
    `page_id`        STRING COMMENT '页面id',
    `during_time_1d` BIGINT COMMENT '最近1日浏览时长',
    `view_count_1d`  BIGINT COMMENT '最近1日访问次数'
) COMMENT '流量域访客页面粒度页面浏览最近1日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_page_visitor_page_view_1d'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_traffic_page_visitor_page_view_1d partition(dt='2020-06-14')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(during_time),
    count(*)
from dwd_traffic_page_view_inc
where dt='2020-06-14'
group by mid_id,brand,model,operate_system,page_id;


1.1.10 数据装载脚本


1、首日数据装载脚本

(1)在hadoop102的/home/zhm/bin目录下创建dwd_to_dws_1d_init.sh

(2)编写如下内容

#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
   do_date=$2
else 
   echo "请传入日期参数"
   exit
fi
dws_trade_province_order_1d="
insert overwrite table ${APP}.dws_trade_province_order_1d partition(dt)
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d,
        dt
    from ${APP}.dwd_trade_order_detail_inc
    group by province_id,dt
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from ${APP}.dim_province_full
    where dt='$do_date'
)p
on o.province_id=p.id;
"
dws_trade_user_cart_add_1d="
insert overwrite table ${APP}.dws_trade_user_cart_add_1d partition(dt)
select
    user_id,
    count(*),
    sum(sku_num),
    dt
from ${APP}.dwd_trade_cart_add_inc
group by user_id,dt;
"
dws_trade_user_order_1d="
insert overwrite table ${APP}.dws_trade_user_order_1d partition(dt)
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_original_amount),
    sum(nvl(split_activity_amount,0)),
    sum(nvl(split_coupon_amount,0)),
    sum(split_total_amount),
    dt
from ${APP}.dwd_trade_order_detail_inc
group by user_id,dt;
"
dws_trade_user_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_order_refund_1d partition(dt)
select
    user_id,
    count(*) order_refund_count,
    sum(refund_num) order_refund_num,
    sum(refund_amount) order_refund_amount,
    dt
from ${APP}.dwd_trade_order_refund_inc
group by user_id,dt;
"
dws_trade_user_payment_1d="
insert overwrite table ${APP}.dws_trade_user_payment_1d partition(dt)
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount),
    dt
from ${APP}.dwd_trade_pay_detail_suc_inc
group by user_id,dt;
"
dws_trade_user_sku_order_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_1d partition(dt)
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count_1d,
    order_num_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d,
    dt
from
(
    select
        dt,
        user_id,
        sku_id,
        count(*) order_count_1d,
        sum(sku_num) order_num_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0.0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0.0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from ${APP}.dwd_trade_order_detail_inc
    group by dt,user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from ${APP}.dim_sku_full
    where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_trade_user_sku_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_1d partition(dt)
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_refund_count,
    order_refund_num,
    order_refund_amount,
    dt
from
(
    select
        dt,
        user_id,
        sku_id,
        count(*) order_refund_count,
        sum(refund_num) order_refund_num,
        sum(refund_amount) order_refund_amount
    from ${APP}.dwd_trade_order_refund_inc
    group by dt,user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from ${APP}.dim_sku_full
    where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_traffic_page_visitor_page_view_1d="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_1d partition(dt='$do_date')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(during_time),
    count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
dws_traffic_session_page_view_1d="
insert overwrite table ${APP}.dws_traffic_session_page_view_1d partition(dt='$do_date')
select
    session_id,
    mid_id,
    brand,
    model,
    operate_system,
    version_code,
    channel,
    sum(during_time),
    count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;
"
case $1 in
    "dws_trade_province_order_1d" )
        hive -e "$dws_trade_province_order_1d"
    ;;
    "dws_trade_user_cart_add_1d" )
        hive -e "$dws_trade_user_cart_add_1d"
    ;;
    "dws_trade_user_order_1d" )
        hive -e "$dws_trade_user_order_1d"
    ;;
    "dws_trade_user_order_refund_1d" )
        hive -e "$dws_trade_user_order_refund_1d"
    ;;
    "dws_trade_user_payment_1d" )
        hive -e "$dws_trade_user_payment_1d"
    ;;
    "dws_trade_user_sku_order_1d" )
        hive -e "$dws_trade_user_sku_order_1d"
    ;;
    "dws_trade_user_sku_order_refund_1d" )
        hive -e "$dws_trade_user_sku_order_refund_1d"
    ;;
    "dws_traffic_page_visitor_page_view_1d" )
        hive -e "$dws_traffic_page_visitor_page_view_1d"
    ;;
    "dws_traffic_session_page_view_1d" )
        hive -e "$dws_traffic_session_page_view_1d"
    ;;
    "all" )
        hive -e "$dws_trade_province_order_1d$dws_trade_user_cart_add_1d$dws_trade_user_order_1d$dws_trade_user_order_refund_1d$dws_trade_user_payment_1d$dws_trade_user_sku_order_1d$dws_trade_user_sku_order_refund_1d$dws_traffic_page_visitor_page_view_1d$dws_traffic_session_page_view_1d"
    ;;
esac

3)增加脚本执行权限

(4)脚本用法

dwd_to_dws_1d_init.sh all 2020-06-14

2、每日数据装载脚本

(1)在hadoop102的/home/zhm/bin目录下创建dwd_to_dws_1d.sh

(2)编写如下内容

#!/bin/bash
APP=gmall
# 如果输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi
dws_trade_province_order_1d="
insert overwrite table ${APP}.dws_trade_province_order_1d partition(dt='$do_date')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    order_count_1d,
    order_original_amount_1d,
    activity_reduce_amount_1d,
    coupon_reduce_amount_1d,
    order_total_amount_1d
from
(
    select
        province_id,
        count(distinct(order_id)) order_count_1d,
        sum(split_original_amount) order_original_amount_1d,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount_1d,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount_1d,
        sum(split_total_amount) order_total_amount_1d
    from ${APP}.dwd_trade_order_detail_inc
    where dt='$do_date'
    group by province_id
)o
left join
(
    select
        id,
        province_name,
        area_code,
        iso_code,
        iso_3166_2
    from ${APP}.dim_province_full
    where dt='$do_date'
)p
on o.province_id=p.id;
"
dws_trade_user_cart_add_1d="
insert overwrite table ${APP}.dws_trade_user_cart_add_1d partition(dt='$do_date')
select
    user_id,
    count(*),
    sum(sku_num)
from ${APP}.dwd_trade_cart_add_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_order_1d="
insert overwrite table ${APP}.dws_trade_user_order_1d partition(dt='$do_date')
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_original_amount),
    sum(nvl(split_activity_amount,0)),
    sum(nvl(split_coupon_amount,0)),
    sum(split_total_amount)
from ${APP}.dwd_trade_order_detail_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_order_refund_1d partition(dt='$do_date')
select
    user_id,
    count(*),
    sum(refund_num),
    sum(refund_amount)
from ${APP}.dwd_trade_order_refund_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_payment_1d="
insert overwrite table ${APP}.dws_trade_user_payment_1d partition(dt='$do_date')
select
    user_id,
    count(distinct(order_id)),
    sum(sku_num),
    sum(split_payment_amount)
from ${APP}.dwd_trade_pay_detail_suc_inc
where dt='$do_date'
group by user_id;
"
dws_trade_user_sku_order_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_1d partition(dt='$do_date')
select
    user_id,
    id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_count,
    order_num,
    order_original_amount,
    activity_reduce_amount,
    coupon_reduce_amount,
    order_total_amount
from
(
    select
        user_id,
        sku_id,
        count(*) order_count,
        sum(sku_num) order_num,
        sum(split_original_amount) order_original_amount,
        sum(nvl(split_activity_amount,0)) activity_reduce_amount,
        sum(nvl(split_coupon_amount,0)) coupon_reduce_amount,
        sum(split_total_amount) order_total_amount
    from ${APP}.dwd_trade_order_detail_inc
    where dt='$do_date'
    group by user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from ${APP}.dim_sku_full
    where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_trade_user_sku_order_refund_1d="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_1d partition(dt='$do_date')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    order_refund_count,
    order_refund_num,
    order_refund_amount
from
(
    select
        user_id,
        sku_id,
        count(*) order_refund_count,
        sum(refund_num) order_refund_num,
        sum(refund_amount) order_refund_amount
    from ${APP}.dwd_trade_order_refund_inc
    where dt='$do_date'
    group by user_id,sku_id
)od
left join
(
    select
        id,
        sku_name,
        category1_id,
        category1_name,
        category2_id,
        category2_name,
        category3_id,
        category3_name,
        tm_id,
        tm_name
    from ${APP}.dim_sku_full
    where dt='$do_date'
)sku
on od.sku_id=sku.id;
"
dws_traffic_page_visitor_page_view_1d="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_1d partition(dt='$do_date')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(during_time),
    count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
dws_traffic_session_page_view_1d="
insert overwrite table ${APP}.dws_traffic_session_page_view_1d partition(dt='$do_date')
select
    session_id,
    mid_id,
    brand,
    model,
    operate_system,
    version_code,
    channel,
    sum(during_time),
    count(*)
from ${APP}.dwd_traffic_page_view_inc
where dt='$do_date'
group by session_id,mid_id,brand,model,operate_system,version_code,channel;
"
case $1 in
    "dws_trade_province_order_1d" )
        hive -e "$dws_trade_province_order_1d"
    ;;
    "dws_trade_user_cart_add_1d" )
        hive -e "$dws_trade_user_cart_add_1d"
    ;;
    "dws_trade_user_order_1d" )
        hive -e "$dws_trade_user_order_1d"
    ;;
    "dws_trade_user_order_refund_1d" )
        hive -e "$dws_trade_user_order_refund_1d"
    ;;
    "dws_trade_user_payment_1d" )
        hive -e "$dws_trade_user_payment_1d"
    ;;
    "dws_trade_user_sku_order_1d" )
        hive -e "$dws_trade_user_sku_order_1d"
    ;;
    "dws_trade_user_sku_order_refund_1d" )
        hive -e "$dws_trade_user_sku_order_refund_1d"
    ;;
    "dws_traffic_page_visitor_page_view_1d" )
        hive -e "$dws_traffic_page_visitor_page_view_1d"
    ;;
    "dws_traffic_session_page_view_1d" )
        hive -e "$dws_traffic_session_page_view_1d"
    ;;
    "all" )
        hive -e "$dws_trade_province_order_1d$dws_trade_user_cart_add_1d$dws_trade_user_order_1d$dws_trade_user_order_refund_1d$dws_trade_user_payment_1d$dws_trade_user_sku_order_1d$dws_trade_user_sku_order_refund_1d$dws_traffic_page_visitor_page_view_1d$dws_traffic_session_page_view_1d"
    ;;
esac

(3)增加脚本执行权限

(4)脚本用法

dwd_to_dws_1d.sh all 2020-06-14


1.2 最近n日汇总表


1.2.1 交易域用户商品粒度订单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_sku_order_nd;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_nd
(
    `user_id`                    STRING COMMENT '用户id',
    `sku_id`                     STRING COMMENT 'sku_id',
    `sku_name`                   STRING COMMENT 'sku名称',
    `category1_id`               STRING COMMENT '一级分类id',
    `category1_name`             STRING COMMENT '一级分类名称',
    `category2_id`               STRING COMMENT '一级分类id',
    `category2_name`             STRING COMMENT '一级分类名称',
    `category3_id`               STRING COMMENT '一级分类id',
    `category3_name`             STRING COMMENT '一级分类名称',
    `tm_id`                      STRING COMMENT '品牌id',
    `tm_name`                    STRING COMMENT '品牌名称',
    `order_count_7d`             STRING COMMENT '最近7日下单次数',
    `order_num_7d`               BIGINT COMMENT '最近7日下单件数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_num_30d`              BIGINT COMMENT '最近30日下单件数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域用户商品粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_sku_order_nd partition(dt='2020-06-14')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('2020-06-14',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_user_sku_order_1d
where dt>=date_add('2020-06-14',-29)
group by  user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;


1.2.2 交易域用户商品粒度退单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_sku_order_refund_nd;
CREATE EXTERNAL TABLE dws_trade_user_sku_order_refund_nd
(
    `user_id`                     STRING COMMENT '用户id',
    `sku_id`                      STRING COMMENT 'sku_id',
    `sku_name`                    STRING COMMENT 'sku名称',
    `category1_id`                STRING COMMENT '一级分类id',
    `category1_name`              STRING COMMENT '一级分类名称',
    `category2_id`                STRING COMMENT '一级分类id',
    `category2_name`              STRING COMMENT '一级分类名称',
    `category3_id`                STRING COMMENT '一级分类id',
    `category3_name`              STRING COMMENT '一级分类名称',
    `tm_id`                       STRING COMMENT '品牌id',
    `tm_name`                     STRING COMMENT '品牌名称',
    `order_refund_count_7d`       BIGINT COMMENT '最近7日退单次数',
    `order_refund_num_7d`         BIGINT COMMENT '最近7日退单件数',
    `order_refund_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日退单金额',
    `order_refund_count_30d`      BIGINT COMMENT '最近30日退单次数',
    `order_refund_num_30d`        BIGINT COMMENT '最近30日退单件数',
    `order_refund_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日退单金额'
) COMMENT '交易域用户商品粒度退单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_sku_order_refund_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_sku_order_refund_nd partition(dt='2020-06-14')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_amount_1d,0)),
    sum(order_refund_count_1d),
    sum(order_refund_num_1d),
    sum(order_refund_amount_1d)
from dws_trade_user_sku_order_refund_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;


1.2.3 交易域用户粒度订单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_order_nd;
CREATE EXTERNAL TABLE dws_trade_user_order_nd
(
    `user_id`                    STRING COMMENT '用户id',
    `order_count_7d`             BIGINT COMMENT '最近7日下单次数',
    `order_num_7d`               BIGINT COMMENT '最近7日下单商品件数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日下单活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日下单优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_num_30d`              BIGINT COMMENT '最近30日下单商品件数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日下单活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日下单优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域用户粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_order_nd partition(dt='2020-06-14')
select
    user_id,
    sum(if(dt>=date_add('2020-06-14',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_user_order_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id;


1.2.4 交易域用户粒度加购最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_cart_add_nd;
CREATE EXTERNAL TABLE dws_trade_user_cart_add_nd
(
    `user_id`            STRING COMMENT '用户id',
    `cart_add_count_7d`  BIGINT COMMENT '最近7日加购次数',
    `cart_add_num_7d`    BIGINT COMMENT '最近7日加购商品件数',
    `cart_add_count_30d` BIGINT COMMENT '最近30日加购次数',
    `cart_add_num_30d`   BIGINT COMMENT '最近30日加购商品件数'
) COMMENT '交易域用户粒度加购最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_cart_add_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_cart_add_nd partition(dt='2020-06-14')
select
    user_id,
    sum(if(dt>=date_add('2020-06-14',-6),cart_add_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),cart_add_num_1d,0)),
    sum(cart_add_count_1d),
    sum(cart_add_num_1d)
from dws_trade_user_cart_add_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id;


1.2.5 交易域用户粒度支付最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_payment_nd;
CREATE EXTERNAL TABLE dws_trade_user_payment_nd
(
    `user_id`            STRING COMMENT '用户id',
    `payment_count_7d`   BIGINT COMMENT '最近7日支付次数',
    `payment_num_7d`     BIGINT COMMENT '最近7日支付商品件数',
    `payment_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日支付金额',
    `payment_count_30d`  BIGINT COMMENT '最近30日支付次数',
    `payment_num_30d`    BIGINT COMMENT '最近30日支付商品件数',
    `payment_amount_30d` DECIMAL(16, 2) COMMENT '最近30日支付金额'
) COMMENT '交易域用户粒度支付最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_payment_nd'
TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_payment_nd partition (dt = '2020-06-14')
select user_id,
       sum(if(dt >= date_add('2020-06-14', -6), payment_count_1d, 0)),
       sum(if(dt >= date_add('2020-06-14', -6), payment_num_1d, 0)),
       sum(if(dt >= date_add('2020-06-14', -6), payment_amount_1d, 0)),
       sum(payment_count_1d),
       sum(payment_num_1d),
       sum(payment_amount_1d)
from dws_trade_user_payment_1d
where dt >= date_add('2020-06-14', -29)
  and dt <= '2020-06-14'
group by user_id;


1.2.6 交易域省份粒度订单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_province_order_nd;
CREATE EXTERNAL TABLE dws_trade_province_order_nd
(
    `province_id`                STRING COMMENT '用户id',
    `province_name`              STRING COMMENT '省份名称',
    `area_code`                  STRING COMMENT '地区编码',
    `iso_code`                   STRING COMMENT '旧版ISO-3166-2编码',
    `iso_3166_2`                 STRING COMMENT '新版版ISO-3166-2编码',
    `order_count_7d`             BIGINT COMMENT '最近7日下单次数',
    `order_original_amount_7d`   DECIMAL(16, 2) COMMENT '最近7日下单原始金额',
    `activity_reduce_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日下单活动优惠金额',
    `coupon_reduce_amount_7d`    DECIMAL(16, 2) COMMENT '最近7日下单优惠券优惠金额',
    `order_total_amount_7d`      DECIMAL(16, 2) COMMENT '最近7日下单最终金额',
    `order_count_30d`            BIGINT COMMENT '最近30日下单次数',
    `order_original_amount_30d`  DECIMAL(16, 2) COMMENT '最近30日下单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '最近30日下单活动优惠金额',
    `coupon_reduce_amount_30d`   DECIMAL(16, 2) COMMENT '最近30日下单优惠券优惠金额',
    `order_total_amount_30d`     DECIMAL(16, 2) COMMENT '最近30日下单最终金额'
) COMMENT '交易域省份粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_province_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_province_order_nd partition(dt='2020-06-14')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    sum(if(dt>=date_add('2020-06-14',-6),order_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from dws_trade_province_order_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by province_id,province_name,area_code,iso_code,iso_3166_2;


1.2.7 交易域优惠券粒度订单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_coupon_order_nd;
CREATE EXTERNAL TABLE dws_trade_coupon_order_nd
(
    `coupon_id`                STRING COMMENT '优惠券id',
    `coupon_name`              STRING COMMENT '优惠券名称',
    `coupon_type_code`         STRING COMMENT '优惠券类型id',
    `coupon_type_name`         STRING COMMENT '优惠券类型名称',
    `coupon_rule`              STRING COMMENT '优惠券规则',
    `start_date`               STRING COMMENT '发布日期',
    `original_amount_30d`      DECIMAL(16, 2) COMMENT '使用下单原始金额',
    `coupon_reduce_amount_30d` DECIMAL(16, 2) COMMENT '使用下单优惠金额'
) COMMENT '交易域优惠券粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_coupon_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_coupon_order_nd partition(dt='2020-06-14')
select
    id,
    coupon_name,
    coupon_type_code,
    coupon_type_name,
    benefit_rule,
    start_date,
    sum(split_original_amount),
    sum(split_coupon_amount)
from
(
    select
        id,
        coupon_name,
        coupon_type_code,
        coupon_type_name,
        benefit_rule,
        date_format(start_time,'yyyy-MM-dd') start_date
    from dim_coupon_full
    where dt='2020-06-14'
    and date_format(start_time,'yyyy-MM-dd')>=date_add('2020-06-14',-29)
)cou
left join
(
    select
        coupon_id,
        order_id,
        split_original_amount,
        split_coupon_amount
    from dwd_trade_order_detail_inc
    where dt>=date_add('2020-06-14',-29)
    and dt<='2020-06-14'
    and coupon_id is not null
)od
on cou.id=od.coupon_id
group by id,coupon_name,coupon_type_code,coupon_type_name,benefit_rule,start_date;


1.2.8 交易域活动粒度订单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_activity_order_nd;
CREATE EXTERNAL TABLE dws_trade_activity_order_nd
(
    `activity_id`                STRING COMMENT '活动id',
    `activity_name`              STRING COMMENT '活动名称',
    `activity_type_code`         STRING COMMENT '活动类型编码',
    `activity_type_name`         STRING COMMENT '活动类型名称',
    `start_date`                 STRING COMMENT '发布日期',
    `original_amount_30d`        DECIMAL(16, 2) COMMENT '参与活动订单原始金额',
    `activity_reduce_amount_30d` DECIMAL(16, 2) COMMENT '参与活动订单优惠金额'
) COMMENT '交易域活动粒度订单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_activity_order_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_activity_order_nd partition(dt='2020-06-14')
select
    act.activity_id,
    activity_name,
    activity_type_code,
    activity_type_name,
    date_format(start_time,'yyyy-MM-dd'),
    sum(split_original_amount),
    sum(split_activity_amount)
from
(
    select
        activity_id,
        activity_name,
        activity_type_code,
        activity_type_name,
        start_time
    from dim_activity_full
    where dt='2020-06-14'
    and date_format(start_time,'yyyy-MM-dd')>=date_add('2020-06-14',-29)
    group by activity_id, activity_name, activity_type_code, activity_type_name,start_time
)act
left join
(
    select
        activity_id,
        order_id,
        split_original_amount,
        split_activity_amount
    from dwd_trade_order_detail_inc
    where dt>=date_add('2020-06-14',-29)
    and dt<='2020-06-14'
    and activity_id is not null
)od
on act.activity_id=od.activity_id
group by act.activity_id,activity_name,activity_type_code,activity_type_name,start_time;


1.2.9 交易域用户粒度退单最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_order_refund_nd;
CREATE EXTERNAL TABLE dws_trade_user_order_refund_nd
(
    `user_id`                 STRING COMMENT '用户id',
    `order_refund_count_7d`   BIGINT COMMENT '最近7日退单次数',
    `order_refund_num_7d`     BIGINT COMMENT '最近7日退单商品件数',
    `order_refund_amount_7d`  DECIMAL(16, 2) COMMENT '最近7日退单金额',
    `order_refund_count_30d`  BIGINT COMMENT '最近30日退单次数',
    `order_refund_num_30d`    BIGINT COMMENT '最近30日退单商品件数',
    `order_refund_amount_30d` DECIMAL(16, 2) COMMENT '最近30日退单金额'
) COMMENT '交易域用户粒度退单最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_refund_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_trade_user_order_refund_nd partition(dt='2020-06-14')
select
    user_id,
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_count_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_num_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),order_refund_amount_1d,0)),
    sum(order_refund_count_1d),
    sum(order_refund_num_1d),
    sum(order_refund_amount_1d)
from dws_trade_user_order_refund_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by user_id;


1.2.10 流量域访客页面粒度页面浏览最近n日汇总表


1、建表语句

DROP TABLE IF EXISTS dws_traffic_page_visitor_page_view_nd;
CREATE EXTERNAL TABLE dws_traffic_page_visitor_page_view_nd
(
    `mid_id`          STRING COMMENT '访客id',
    `brand`           string comment '手机品牌',
    `model`           string comment '手机型号',
    `operate_system`  string comment '操作系统',
    `page_id`         STRING COMMENT '页面id',
    `during_time_7d`  BIGINT COMMENT '最近7日浏览时长',
    `view_count_7d`   BIGINT COMMENT '最近7日访问次数',
    `during_time_30d` BIGINT COMMENT '最近30日浏览时长',
    `view_count_30d`  BIGINT COMMENT '最近30日访问次数'
) COMMENT '流量域访客页面粒度页面浏览最近n日汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_traffic_page_visitor_page_view_nd'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

insert overwrite table dws_traffic_page_visitor_page_view_nd partition(dt='2020-06-14')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(if(dt>=date_add('2020-06-14',-6),during_time_1d,0)),
    sum(if(dt>=date_add('2020-06-14',-6),view_count_1d,0)),
    sum(during_time_1d),
    sum(view_count_1d)
from dws_traffic_page_visitor_page_view_1d
where dt>=date_add('2020-06-14',-29)
and dt<='2020-06-14'
group by mid_id,brand,model,operate_system,page_id;```
### 1.2.11 数据装载脚本
1、每天数据装载脚本
(1)在hadoop102的/home/zhm/bin目录下创建dws_1d_to_dws_nd.sh
(2)添加如下内容
```bash
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi
dws_trade_activity_order_nd="
insert overwrite table ${APP}.dws_trade_activity_order_nd partition(dt='$do_date')
select
    act.activity_id,
    activity_name,
    activity_type_code,
    activity_type_name,
    date_format(start_time,'yyyy-MM-dd'),
    sum(split_original_amount),
    sum(split_activity_amount)
from
(
    select
        activity_id,
        activity_name,
        activity_type_code,
        activity_type_name,
        start_time
    from ${APP}.dim_activity_full
    where dt='$do_date'
    and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
    group by activity_id, activity_name, activity_type_code, activity_type_name,start_time
)act
left join
(
    select
        activity_id,
        order_id,
        split_original_amount,
        split_activity_amount
    from ${APP}.dwd_trade_order_detail_inc
    where dt>=date_add('$do_date',-29)
    and dt<='$do_date'
    and activity_id is not null
)od
on act.activity_id=od.activity_id
group by act.activity_id,activity_name,activity_type_code,activity_type_name,start_time;
"
dws_trade_coupon_order_nd="
insert overwrite table ${APP}.dws_trade_coupon_order_nd partition(dt='$do_date')
select
    id,
    coupon_name,
    coupon_type_code,
    coupon_type_name,
    benefit_rule,
    start_date,
    sum(split_original_amount),
    sum(split_coupon_amount)
from
(
    select
        id,
        coupon_name,
        coupon_type_code,
        coupon_type_name,
        benefit_rule,
        date_format(start_time,'yyyy-MM-dd') start_date
    from ${APP}.dim_coupon_full
    where dt='$do_date'
    and date_format(start_time,'yyyy-MM-dd')>=date_add('$do_date',-29)
)cou
left join
(
    select
        coupon_id,
        order_id,
        split_original_amount,
        split_coupon_amount
    from ${APP}.dwd_trade_order_detail_inc
    where dt>=date_add('$do_date',-29)
    and dt<='$do_date'
    and coupon_id is not null
)od
on cou.id=od.coupon_id
group by id,coupon_name,coupon_type_code,coupon_type_name,benefit_rule,start_date;
"
dws_trade_province_order_nd="
insert overwrite table ${APP}.dws_trade_province_order_nd partition(dt='$do_date')
select
    province_id,
    province_name,
    area_code,
    iso_code,
    iso_3166_2,
    sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from ${APP}.dws_trade_province_order_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by province_id,province_name,area_code,iso_code,iso_3166_2;
"
dws_trade_user_cart_add_nd="
insert overwrite table ${APP}.dws_trade_user_cart_add_nd partition(dt='$do_date')
select
    user_id,
    sum(if(dt>=date_add('$do_date',-6),cart_add_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),cart_add_num_1d,0)),
    sum(cart_add_count_1d),
    sum(cart_add_num_1d)
from ${APP}.dws_trade_user_cart_add_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_order_nd="
insert overwrite table ${APP}.dws_trade_user_order_nd partition(dt='$do_date')
select
    user_id,
    sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_num_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from ${APP}.dws_trade_user_order_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_order_refund_nd="
insert overwrite table ${APP}.dws_trade_user_order_refund_nd partition(dt='$do_date')
select
    user_id,
    sum(if(dt>=date_add('$do_date',-6),order_refund_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_refund_num_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_refund_amount_1d,0)),
    sum(order_refund_count_1d),
    sum(order_refund_num_1d),
    sum(order_refund_amount_1d)
from ${APP}.dws_trade_user_order_refund_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id;
"
dws_trade_user_payment_nd="
insert overwrite table ${APP}.dws_trade_user_payment_nd partition (dt = '$do_date')
select user_id,
       sum(if(dt >= date_add('$do_date', -6), payment_count_1d, 0)),
       sum(if(dt >= date_add('$do_date', -6), payment_num_1d, 0)),
       sum(if(dt >= date_add('$do_date', -6), payment_amount_1d, 0)),
       sum(payment_count_1d),
       sum(payment_num_1d),
       sum(payment_amount_1d)
from ${APP}.dws_trade_user_payment_1d
where dt >= date_add('$do_date', -29)
  and dt <= '$do_date'
group by user_id;
"
dws_trade_user_sku_order_nd="
insert overwrite table ${APP}.dws_trade_user_sku_order_nd partition(dt='$do_date')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('$do_date',-6),order_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_num_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_original_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),activity_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),coupon_reduce_amount_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_total_amount_1d,0)),
    sum(order_count_1d),
    sum(order_num_1d),
    sum(order_original_amount_1d),
    sum(activity_reduce_amount_1d),
    sum(coupon_reduce_amount_1d),
    sum(order_total_amount_1d)
from ${APP}.dws_trade_user_sku_order_1d
where dt>=date_add('$do_date',-30)
group by  user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;
"
dws_trade_user_sku_order_refund_nd="
insert overwrite table ${APP}.dws_trade_user_sku_order_refund_nd partition(dt='$do_date')
select
    user_id,
    sku_id,
    sku_name,
    category1_id,
    category1_name,
    category2_id,
    category2_name,
    category3_id,
    category3_name,
    tm_id,
    tm_name,
    sum(if(dt>=date_add('$do_date',-6),order_refund_count_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_refund_num_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),order_refund_amount_1d,0)),
    sum(order_refund_count_1d),
    sum(order_refund_num_1d),
    sum(order_refund_amount_1d)
from ${APP}.dws_trade_user_sku_order_refund_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by user_id,sku_id,sku_name,category1_id,category1_name,category2_id,category2_name,category3_id,category3_name,tm_id,tm_name;
"
dws_traffic_page_visitor_page_view_nd="
insert overwrite table ${APP}.dws_traffic_page_visitor_page_view_nd partition(dt='$do_date')
select
    mid_id,
    brand,
    model,
    operate_system,
    page_id,
    sum(if(dt>=date_add('$do_date',-6),during_time_1d,0)),
    sum(if(dt>=date_add('$do_date',-6),view_count_1d,0)),
    sum(during_time_1d),
    sum(view_count_1d)
from ${APP}.dws_traffic_page_visitor_page_view_1d
where dt>=date_add('$do_date',-29)
and dt<='$do_date'
group by mid_id,brand,model,operate_system,page_id;
"
case $1 in
    "dws_trade_activity_order_nd" )
        hive -e "$dws_trade_activity_order_nd"
    ;;
    "dws_trade_coupon_order_nd" )
        hive -e "$dws_trade_coupon_order_nd"
    ;;
    "dws_trade_province_order_nd" )
        hive -e "$dws_trade_province_order_nd"
    ;;
    "dws_trade_user_cart_add_nd" )
        hive -e "$dws_trade_user_cart_add_nd"
    ;;
    "dws_trade_user_order_nd" )
        hive -e "$dws_trade_user_order_nd"
    ;;
    "dws_trade_user_order_refund_nd" )
        hive -e "$dws_trade_user_order_refund_nd"
    ;;
    "dws_trade_user_payment_nd" )
        hive -e "$dws_trade_user_payment_nd"
    ;;
    "dws_trade_user_sku_order_nd" )
        hive -e "$dws_trade_user_sku_order_nd"
    ;;
    "dws_trade_user_sku_order_refund_nd" )
        hive -e "$dws_trade_user_sku_order_refund_nd"
    ;;
    "dws_traffic_page_visitor_page_view_nd" )
        hive -e "$dws_traffic_page_visitor_page_view_nd"
    ;;
    "all" )
        hive -e "$dws_trade_activity_order_nd$dws_trade_coupon_order_nd$dws_trade_province_order_nd$dws_trade_user_cart_add_nd$dws_trade_user_order_nd$dws_trade_user_order_refund_nd$dws_trade_user_payment_nd$dws_trade_user_sku_order_nd$dws_trade_user_sku_order_refund_nd$dws_traffic_page_visitor_page_view_nd"
    ;;
esac

(3)增加脚本执行权限

(4)脚本用法

dws_1d_to_dws_nd.sh all 2020-06-14


1.3 历史至今汇总表


1.3.1 交易域用户粒度订单历史至今汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_order_td;
CREATE EXTERNAL TABLE dws_trade_user_order_td
(
    `user_id`                   STRING COMMENT '用户id',
    `order_date_first`          STRING COMMENT '首次下单日期',
    `order_date_last`           STRING COMMENT '末次下单日期',
    `order_count_td`            BIGINT COMMENT '下单次数',
    `order_num_td`              BIGINT COMMENT '购买商品件数',
    `original_amount_td`        DECIMAL(16, 2) COMMENT '原始金额',
    `activity_reduce_amount_td` DECIMAL(16, 2) COMMENT '活动优惠金额',
    `coupon_reduce_amount_td`   DECIMAL(16, 2) COMMENT '优惠券优惠金额',
    `total_amount_td`           DECIMAL(16, 2) COMMENT '最终金额'
) COMMENT '交易域用户粒度订单历史至今汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_order_td'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_trade_user_order_td partition(dt='2020-06-14')
select
    user_id,
    min(dt) login_date_first,
    max(dt) login_date_last,
    sum(order_count_1d) order_count,
    sum(order_num_1d) order_num,
    sum(order_original_amount_1d) original_amount,
    sum(activity_reduce_amount_1d) activity_reduce_amount,
    sum(coupon_reduce_amount_1d) coupon_reduce_amount,
    sum(order_total_amount_1d) total_amount
from dws_trade_user_order_1d
group by user_id;

(2)每日装载

insert overwrite table dws_trade_user_order_td partition(dt='2020-06-15')
select
    nvl(old.user_id,new.user_id),
    if(new.user_id is not null and old.user_id is null,'2020-06-15',old.order_date_first),
    if(new.user_id is not null,'2020-06-15',old.order_date_last),
    nvl(old.order_count_td,0)+nvl(new.order_count_1d,0),
    nvl(old.order_num_td,0)+nvl(new.order_num_1d,0),
    nvl(old.original_amount_td,0)+nvl(new.order_original_amount_1d,0),
    nvl(old.activity_reduce_amount_td,0)+nvl(new.activity_reduce_amount_1d,0),
    nvl(old.coupon_reduce_amount_td,0)+nvl(new.coupon_reduce_amount_1d,0),
    nvl(old.total_amount_td,0)+nvl(new.order_total_amount_1d,0)
from
(
    select
        user_id,
        order_date_first,
        order_date_last,
        order_count_td,
        order_num_td,
        original_amount_td,
        activity_reduce_amount_td,
        coupon_reduce_amount_td,
        total_amount_td
    from dws_trade_user_order_td
    where dt=date_add('2020-06-15',-1)
)old
full outer join
(
    select
        user_id,
        order_count_1d,
        order_num_1d,
        order_original_amount_1d,
        activity_reduce_amount_1d,
        coupon_reduce_amount_1d,
        order_total_amount_1d
    from dws_trade_user_order_1d
    where dt='2020-06-15'
)new
on old.user_id=new.user_id;


1.3.2 交易域用户粒度支付历史至今汇总表


1、建表语句

DROP TABLE IF EXISTS dws_trade_user_payment_td;
CREATE EXTERNAL TABLE dws_trade_user_payment_td
(
    `user_id`            STRING COMMENT '用户id',
    `payment_date_first` STRING COMMENT '首次支付日期',
    `payment_date_last`  STRING COMMENT '末次支付日期',
    `payment_count_td`   BIGINT COMMENT '最近7日支付次数',
    `payment_num_td`     BIGINT COMMENT '最近7日支付商品件数',
    `payment_amount_td`  DECIMAL(16, 2) COMMENT '最近7日支付金额'
) COMMENT '交易域用户粒度支付历史至今汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_trade_user_payment_td'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_trade_user_payment_td partition(dt='2020-06-14')
select
    user_id,
    min(dt) payment_date_first,
    max(dt) payment_date_last,
    sum(payment_count_1d) payment_count,
    sum(payment_num_1d) payment_num,
    sum(payment_amount_1d) payment_amount
from dws_trade_user_payment_1d
group by user_id;

(2)每日装载

insert overwrite table dws_trade_user_payment_td partition(dt='2020-06-15')
select
    nvl(old.user_id,new.user_id),
    if(old.user_id is null and new.user_id is not null,'2020-06-15',old.payment_date_first),
    if(new.user_id is not null,'2020-06-15',old.payment_date_last),
    nvl(old.payment_count_td,0)+nvl(new.payment_count_1d,0),
    nvl(old.payment_num_td,0)+nvl(new.payment_num_1d,0),
    nvl(old.payment_amount_td,0)+nvl(new.payment_amount_1d,0)
from
(
    select
        user_id,
        payment_date_first,
        payment_date_last,
        payment_count_td,
        payment_num_td,
        payment_amount_td
    from dws_trade_user_payment_td
    where dt=date_add('2020-06-15',-1)
)old
full outer join
(
    select
        user_id,
        payment_count_1d,
        payment_num_1d,
        payment_amount_1d
    from dws_trade_user_payment_1d
    where dt='2020-06-15'
)new
on old.user_id=new.user_id;


1.3.3 用户域用户粒度登录历史至今汇总表


1、建表语句

DROP TABLE IF EXISTS dws_user_user_login_td;
CREATE EXTERNAL TABLE dws_user_user_login_td
(
    `user_id`         STRING COMMENT '用户id',
    `login_date_last` STRING COMMENT '末次登录日期',
    `login_count_td`  BIGINT COMMENT '累计登录次数'
) COMMENT '用户域用户粒度登录历史至今汇总事实表'
    PARTITIONED BY (`dt` STRING)
    STORED AS ORC
    LOCATION '/warehouse/gmall/dws/dws_user_user_login_td'
    TBLPROPERTIES ('orc.compress' = 'snappy');

2、数据装载

(1)首日装载

insert overwrite table dws_user_user_login_td partition(dt='2020-06-14')
select
    u.id,
    nvl(login_date_last,date_format(create_time,'yyyy-MM-dd')),
    nvl(login_count_td,1)
from
(
    select
        id,
        create_time
    from dim_user_zip
    where dt='9999-12-31'
)u
left join
(
    select
        user_id,
        max(dt) login_date_last,
        count(*) login_count_td
    from dwd_user_login_inc
    group by user_id
)l
on u.id=l.user_id;

(2)每日装载

insert overwrite table dws_user_user_login_td partition(dt='2020-06-15')
select
    nvl(old.user_id,new.user_id),
    if(new.user_id is null,old.login_date_last,'2020-06-15'),
    nvl(old.login_count_td,0)+nvl(new.login_count_1d,0)
from
(
    select
        user_id,
        login_date_last,
        login_count_td
    from dws_user_user_login_td
    where dt=date_add('2020-06-15',-1)
)old
full outer join
(
    select
        user_id,
        count(*) login_count_1d
    from dwd_user_login_inc
    where dt='2020-06-15'
    group by user_id
)new
on old.user_id=new.user_id;


1.3.4 数据装载脚本


1、首日数据装载脚本

(1)在hadoop102的/home/zhm/bin目录下创建dws_1d_to_dws_td_init.sh

(2)添加如下内容

#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
   do_date=$2
else 
   echo "请传入日期参数"
   exit
fi
dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition(dt='$do_date')
select
    user_id,
    min(dt) login_date_first,
    max(dt) login_date_last,
    sum(order_count_1d) order_count,
    sum(order_num_1d) order_num,
    sum(order_original_amount_1d) original_amount,
    sum(activity_reduce_amount_1d) activity_reduce_amount,
    sum(coupon_reduce_amount_1d) coupon_reduce_amount,
    sum(order_total_amount_1d) total_amount
from ${APP}.dws_trade_user_order_1d
group by user_id;
"
dws_trade_user_payment_td="
insert overwrite table ${APP}.dws_trade_user_payment_td partition(dt='$do_date')
select
    user_id,
    min(dt) payment_date_first,
    max(dt) payment_date_last,
    sum(payment_count_1d) payment_count,
    sum(payment_num_1d) payment_num,
    sum(payment_amount_1d) payment_amount
from ${APP}.dws_trade_user_payment_1d
group by user_id;
"
dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition(dt='$do_date')
select
    u.id,
    nvl(login_date_last,date_format(create_time,'yyyy-MM-dd')),
    nvl(login_count_td,1)
from
(
    select
        id,
        create_time
    from ${APP}.dim_user_zip
    where dt='9999-12-31'
)u
left join
(
    select
        user_id,
        max(dt) login_date_last,
        count(*) login_count_td
    from ${APP}.dwd_user_login_inc
    group by user_id
)l
on u.id=l.user_id;
"
case $1 in
    "dws_trade_user_order_td" )
        hive -e "$dws_trade_user_order_td"
    ;;
    "dws_trade_user_payment_td" )
        hive -e "$dws_trade_user_payment_td"
    ;;
    "dws_user_user_login_td" )
        hive -e "$dws_user_user_login_td"
    ;;
    "all" )
        hive -e "$dws_trade_user_order_td$dws_trade_user_payment_td$dws_user_user_login_td"
    ;;
esac

(3)增加脚本执行权限

(4)脚本用法

dws_1d_to_dws_td_init.sh all 2020-06-14

2、每日数据装载脚本

(1)在hadoop102的/home/zhm/bin目录下创建dws_1d_to_dws_td.sh

(2)添加如下内容

#!/bin/bash
APP=gmall
# 如果输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
    do_date=$2
else 
    do_date=`date -d "-1 day" +%F`
fi
dws_trade_user_order_td="
insert overwrite table ${APP}.dws_trade_user_order_td partition(dt='$do_date')
select
    nvl(old.user_id,new.user_id),
    if(new.user_id is not null and old.user_id is null,'$do_date',old.order_date_first),
    if(new.user_id is not null,'$do_date',old.order_date_last),
    nvl(old.order_count_td,0)+nvl(new.order_count_1d,0),
    nvl(old.order_num_td,0)+nvl(new.order_num_1d,0),
    nvl(old.original_amount_td,0)+nvl(new.order_original_amount_1d,0),
    nvl(old.activity_reduce_amount_td,0)+nvl(new.activity_reduce_amount_1d,0),
    nvl(old.coupon_reduce_amount_td,0)+nvl(new.coupon_reduce_amount_1d,0),
    nvl(old.total_amount_td,0)+nvl(new.order_total_amount_1d,0)
from
(
    select
        user_id,
        order_date_first,
        order_date_last,
        order_count_td,
        order_num_td,
        original_amount_td,
        activity_reduce_amount_td,
        coupon_reduce_amount_td,
        total_amount_td
    from ${APP}.dws_trade_user_order_td
    where dt=date_add('$do_date',-1)
)old
full outer join
(
    select
        user_id,
        order_count_1d,
        order_num_1d,
        order_original_amount_1d,
        activity_reduce_amount_1d,
        coupon_reduce_amount_1d,
        order_total_amount_1d
    from ${APP}.dws_trade_user_order_1d
    where dt='$do_date'
)new
on old.user_id=new.user_id;
"
dws_trade_user_payment_td="
insert overwrite table ${APP}.dws_trade_user_payment_td partition(dt='$do_date')
select
    nvl(old.user_id,new.user_id),
    if(old.user_id is null and new.user_id is not null,'$do_date',old.payment_date_first),
    if(new.user_id is not null,'$do_date',old.payment_date_last),
    nvl(old.payment_count_td,0)+nvl(new.payment_count_1d,0),
    nvl(old.payment_num_td,0)+nvl(new.payment_num_1d,0),
    nvl(old.payment_amount_td,0)+nvl(new.payment_amount_1d,0)
from
(
    select
        user_id,
        payment_date_first,
        payment_date_last,
        payment_count_td,
        payment_num_td,
        payment_amount_td
    from ${APP}.dws_trade_user_payment_td
    where dt=date_add('$do_date',-1)
)old
full outer join
(
    select
        user_id,
        payment_count_1d,
        payment_num_1d,
        payment_amount_1d
    from ${APP}.dws_trade_user_payment_1d
    where dt='$do_date'
)new
on old.user_id=new.user_id;
"
dws_user_user_login_td="
insert overwrite table ${APP}.dws_user_user_login_td partition(dt='$do_date')
select
    nvl(old.user_id,new.user_id),
    if(new.user_id is null,old.login_date_last,'$do_date'),
    nvl(old.login_count_td,0)+nvl(new.login_count_1d,0)
from
(
    select
        user_id,
        login_date_last,
        login_count_td
    from ${APP}.dws_user_user_login_td
    where dt=date_add('$do_date',-1)
)old
full outer join
(
    select
        user_id,
        count(*) login_count_1d
    from ${APP}.dwd_user_login_inc
    where dt='$do_date'
    group by user_id
)new
on old.user_id=new.user_id;
"
case $1 in
    "dws_trade_user_order_td" )
        hive -e "$dws_trade_user_order_td"
    ;;
    "dws_trade_user_payment_td" )
        hive -e "$dws_trade_user_payment_td"
    ;;
    "dws_user_user_login_td" )
        hive -e "$dws_user_user_login_td"
    ;;
    "all" )
        hive -e "$dws_trade_user_order_td$dws_trade_user_payment_td$dws_user_user_login_td"
    ;;
esac

(3)执行脚本权限

(4)脚本用法

dws_1d_to_dws_td.sh all 2020-06-14


                                                                                         

                                                                        您的支持是我创作的无限动力

                                                                                       

                      希望我能为您的未来尽绵薄之力

                                                                                       

                    如有错误,谢谢指正若有收获,谢谢赞美

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
5月前
|
存储 数据采集 JavaScript
深入理解数仓开发(一)数据技术篇之日志采集
深入理解数仓开发(一)数据技术篇之日志采集
|
5月前
|
消息中间件 关系型数据库 Kafka
深入理解数仓开发(二)数据技术篇之数据同步
深入理解数仓开发(二)数据技术篇之数据同步
|
4月前
|
存储 DataWorks Java
DataWorks产品使用合集之开发离线数仓时,需要多个工作空间的情况有哪些
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
消息中间件 存储 Kafka
Flink 实时数仓(二)【ODS 层开发】
Flink 实时数仓(二)【ODS 层开发】
|
5月前
|
SQL
离线数仓(十)【ADS 层开发】(5)
离线数仓(十)【ADS 层开发】
|
25天前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
15天前
|
人工智能 分布式计算 数据管理
阿里云位居 IDC MarketScape 中国实时湖仓评估领导者类别
国际数据公司( IDC )首次发布了《IDC MarketScape: 中国实时湖仓市场 2024 年厂商评估》,阿里云在首次报告发布即位居领导者类别。
|
16天前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
89 0
|
2月前
|
存储 机器学习/深度学习 监控
阿里云 Hologres OLAP 解决方案评测
随着大数据时代的到来,企业面临着海量数据的挑战,如何高效地进行数据分析和决策变得尤为重要。阿里云推出的 Hologres OLAP(在线分析处理)解决方案,旨在为用户提供快速、高效的数据分析能力。本文将深入探讨 Hologres OLAP 的特点、优势以及应用场景,并针对方案的技术细节、部署指导、代码示例和数据分析需求进行评测。
117 7
|
2月前
|
运维 数据挖掘 OLAP
阿里云Hologres:一站式轻量级OLAP分析平台的全面评测
在数据驱动决策的今天,企业对高效、灵活的数据分析平台的需求日益增长。阿里云的Hologres,作为一站式实时数仓引擎,提供了强大的OLAP(在线分析处理)分析能力。本文将对Hologres进行深入评测,探讨其在多源集成、性能、易用性以及成本效益方面的表现。
86 7