分享之python 进程

简介: 分享之python 进程

multiprocessing是python的多进程管理包,和threading.Thread类似。


1、multiprocessing模块


直接从侧面用subprocesses替换线程使用GIL的方式,由于这一点,multiprocessing模块可以让程序员在给定的机器上充分的利用CPU。在multiprocessing中,通过创建Process对象生成进程,然后调用它的start()方法


from multiprocessing import Process
def func(name):
    print('hello', name)
if __name__ == "__main__":
    p = Process(target=func,args=('zhangyanlin',))
    p.start()
    p.join()  # 等待进程执行完毕


在使用并发设计的时候最好尽可能的避免共享数据,尤其是在使用多进程的时候。 如果你真有需要 要共享数据, multiprocessing提供了两种方式。


(1)multiprocessing,Array,Value


数据可以用Value或Array存储在一个共享内存地图里,如下:


from multiprocessing import Array,Value,Process
def func(a,b):
    a.value = 3.333333333333333
    for i in range(len(b)):
        b[i] = -b[i]
if __name__ == "__main__":
    num = Value('d',0.0)
    arr = Array('i',range(11))
    c = Process(target=func,args=(num,arr))
    d= Process(target=func,args=(num,arr))
    c.start()
    d.start()
    c.join()
    d.join()
    print(num.value)
    for i in arr:
        print(i)


输出:

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]


创建num和arr时,“d”和“i”参数由Array模块使用的typecodes创建:“d”表示一个双精度的浮点数,“i”表示一个有符号的整数,这些共享对象将被线程安全的处理。


Array(‘i’, range(10))中的‘i’参数:


‘c’: ctypes.c_char     ‘u’: ctypes.c_wchar    ‘b’: ctypes.c_byte     ‘B’: ctypes.c_ubyte
‘h’: ctypes.c_short     ‘H’: ctypes.c_ushort    ‘i’: ctypes.c_int      ‘I’: ctypes.c_uint
‘l’: ctypes.c_long,    ‘L’: ctypes.c_ulong    ‘f’: ctypes.c_float    ‘d’: ctypes.c_double


(2)multiprocessing,Manager


由Manager()返回的manager提供list, dict, Namespace, Lock, RLock, Semaphore, BoundedSemaphore, Condition, Event, Barrier, Queue, Value and Array类型的支持。


from multiprocessing import Process,Manager
def f(d,l):
    d["name"] = "zhangyanlin"
    d["age"] = 18
    d["Job"] = "pythoner"
    l.reverse()
if __name__ == "__main__":
    with Manager() as man:
        d = man.dict()
        l = man.list(range(10))
        p = Process(target=f,args=(d,l))
        p.start()
        p.join()
        print(d)
        print(l)
输出:
  {0.25: None, 1: '1', '2': 2}
  [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Server process manager比 shared memory 更灵活,因为它可以支持任意的对象类型。另外,一个单独的manager可以通过进程在网络上不同的计算机之间共享,不过他比shared memory要慢。


2、进程池(Using a pool of workers)


Pool类描述了一个工作进程池,他有几种不同的方法让任务卸载工作进程。


进程池内部维护一个进程序列,当使用时,则去进程池中获取一个进程,如果进程池序列中没有可供使用的进进程,那么程序就会等待,直到进程池中有可用进程为止。


我们可以用Pool类创建一个进程池, 展开提交的任务给进程池。 例:


#apply
from  multiprocessing import Pool
import time
def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100
if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply(func=f1,args=(i,))
#apply_async
def f1(i):
    time.sleep(0.5)
    print(i)
    return i + 100
def f2(arg):
    print(arg)
if __name__ == "__main__":
    pool = Pool(5)
    for i in range(1,31):
        pool.apply_async(func=f1,args=(i,),callback=f2)
    pool.close()
    pool.join()


一个进程池对象可以控制工作进程池的哪些工作可以被提交,它支持超时和回调的异步结果,有一个类似map的实现。


   processes :使用的工作进程的数量,如果processes是None那么使用 os.cpu_count()返回的数量。

   initializer: 如果initializer是None,那么每一个工作进程在开始的时候会调用initializer(*initargs)。

   maxtasksperchild:工作进程退出之前可以完成的任务数,完成后用一个心的工作进程来替代原进程,来让闲置的资源被释放。maxtasksperchild默认是None,意味着只要Pool存在工作进程就会一直存活。

   context: 用在制定工作进程启动时的上下文,一般使用 multiprocessing.Pool() 或者一个context对象的Pool()方法来创建一个池,两种方法都适当的设置了context


注意:Pool对象的方法只可以被创建pool的进程所调用。


New in version 3.2: maxtasksperchild


New in version 3.4: context


进程池的方法


   apply(func[, args[, kwds]]) :使用arg和kwds参数调用func函数,结果返回前会一直阻塞,由于这个原因,apply_async()更适合并发执行,另外,func函数仅被pool中的一个进程运行。


   apply_async(func[, args[, kwds[, callback[, error_callback]]]]) : apply()方法的一个变体,会返回一个结果对象。如果callback被指定,那么callback可以接收一个参数然后被调用,当结果准备好回调时会调用callback,调用失败时,则用error_callback替换callback。 Callbacks应被立即完成,否则处理结果的线程会被阻塞。


   close() : 阻止更多的任务提交到pool,待任务完成后,工作进程会退出。


   terminate() : 不管任务是否完成,立即停止工作进程。在对pool对象进程垃圾回收的时候,会立即调用terminate()。


   join() : wait工作线程的退出,在调用join()前,必须调用close() or terminate()。这样是因为被终止的进程需要被父进程调用wait(join等价与wait),否则进程会成为僵尸进程。

    map(func, iterable[, chunksize])?
    map_async(func, iterable[, chunksize[, callback[, error_callback]]])?
    imap(func, iterable[, chunksize])?
    imap_unordered(func, iterable[, chunksize])
    starmap(func, iterable[, chunksize])?
    starmap_async(func, iterable[, chunksize[, callback[, error_back]]])
相关文章
|
18天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
1月前
|
调度 iOS开发 MacOS
python多进程一文够了!!!
本文介绍了高效编程中的多任务原理及其在Python中的实现。主要内容包括多任务的概念、单核和多核CPU的多任务实现、并发与并行的区别、多任务的实现方式(多进程、多线程、协程等)。详细讲解了进程的概念、使用方法、全局变量在多个子进程中的共享问题、启动大量子进程的方法、进程间通信(队列、字典、列表共享)、生产者消费者模型的实现,以及一个实际案例——抓取斗图网站的图片。通过这些内容,读者可以深入理解多任务编程的原理和实践技巧。
53 1
|
2月前
|
Python
Python中的多线程与多进程
本文将探讨Python中多线程和多进程的基本概念、使用场景以及实现方式。通过对比分析,我们将了解何时使用多线程或多进程更为合适,并提供一些实用的代码示例来帮助读者更好地理解这两种并发编程技术。
|
2月前
|
数据挖掘 程序员 调度
探索Python的并发编程:线程与进程的实战应用
【10月更文挑战第4天】 本文深入探讨了Python中实现并发编程的两种主要方式——线程和进程,通过对比分析它们的特点、适用场景以及在实际编程中的应用,为读者提供清晰的指导。同时,文章还介绍了一些高级并发模型如协程,并给出了性能优化的建议。
31 3
|
3月前
|
负载均衡 Java 调度
探索Python的并发编程:线程与进程的比较与应用
本文旨在深入探讨Python中的并发编程,重点比较线程与进程的异同、适用场景及实现方法。通过分析GIL对线程并发的影响,以及进程间通信的成本,我们将揭示何时选择线程或进程更为合理。同时,文章将提供实用的代码示例,帮助读者更好地理解并运用这些概念,以提升多任务处理的效率和性能。
60 3
|
2月前
|
存储 Python
Python中的多进程通信实践指南
Python中的多进程通信实践指南
24 0
|
3月前
|
消息中间件 安全 Kafka
Python IPC机制全攻略:让进程间通信变得像呼吸一样自然
【9月更文挑战第12天】在编程领域,进程间通信(IPC)是连接独立执行单元的关键技术。Python凭借简洁的语法和丰富的库支持,提供了多种IPC方案。本文将对比探讨Python的IPC机制,包括管道与消息队列、套接字与共享内存。管道适用于简单场景,而消息队列更灵活,适合高并发环境。套接字广泛用于网络通信,共享内存则在本地高效传输数据。通过示例代码展示`multiprocessing.Queue`的使用,帮助读者理解IPC的实际应用。希望本文能让你更熟练地选择和运用IPC机制。
61 10
|
3月前
|
监控 Ubuntu API
Python脚本监控Ubuntu系统进程内存的实现方式
通过这种方法,我们可以很容易地监控Ubuntu系统中进程的内存使用情况,对于性能分析和资源管理具有很大的帮助。这只是 `psutil`库功能的冰山一角,`psutil`还能够提供更多关于系统和进程的详细信息,强烈推荐进一步探索这个强大的库。
48 1
|
3月前
|
安全 开发者 Python
Python IPC大揭秘:解锁进程间通信新姿势,让你的应用无界连接
【9月更文挑战第11天】在编程世界中,进程间通信(IPC)如同一座无形的桥梁,连接不同进程的信息孤岛,使应用无界而广阔。Python凭借其丰富的IPC机制,让开发者轻松实现进程间的无缝交流。本文将揭开Python IPC的神秘面纱,介绍几种关键的IPC技术:管道提供简单的单向数据传输,适合父子进程间通信;队列则是线程和进程安全的数据共享结构,支持多进程访问;共享内存允许快速读写大量数据,需配合锁机制确保一致性;套接字则能实现跨网络的通信,构建分布式系统。掌握这些技术,你的应用将不再受限于单个进程,实现更强大的功能。
67 6
|
2月前
|
数据采集 消息中间件 Python
Python爬虫-进程间通信
Python爬虫-进程间通信