Apache Doris 行列转换可以这样玩

简介: Apache Doris 行列转换可以这样玩

行列转换在做报表分析时还是经常会遇到的,今天就说一下如何实现行列转换吧。


行列转换就是如下图所示两种展示形式的互相转换


1. 行转列


我们来看一个简单的例子,我们要把下面这个表的数据,转换成图二的样式

1.png

要转换的结果数据展示

2.png

先看看建表语句:

CREATE TABLE tb_score_01(
 id INT(11) NOT NULL,
 userid VARCHAR(20) NOT NULL COMMENT '用户id',
 subject VARCHAR(20) COMMENT '科目',
 score DOUBLE COMMENT '成绩'
)
DUPLICATE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"in_memory" = "false",
"storage_format" = "V2",
"light_schema_change" = "true",
"disable_auto_compaction" = "false"
);
INSERT INTO tb_score_01  VALUES (1,'001','语文',90);
INSERT INTO tb_score_01  VALUES (2,'001','数学',92);
INSERT INTO tb_score_01  VALUES (3,'001','英语',80);
INSERT INTO tb_score_01  VALUES (4,'002','语文',88);
INSERT INTO tb_score_01  VALUES (5,'002','数学',90);
INSERT INTO tb_score_01  VALUES (6,'002','英语',75.5);
INSERT INTO tb_score_01  VALUES (7,'003','语文',70);
INSERT INTO tb_score_01  VALUES (8,'003','数学',85);
INSERT INTO tb_score_01  VALUES (9,'003','英语',90);
INSERT INTO tb_score_01  VALUES (10,'003','政治',82);

传统的做法我们大概是这样实现,一般是通过 case when 语句

SELECT userid,
SUM(CASE `subject` WHEN '语文' THEN score ELSE 0 END) as '语文',
SUM(CASE `subject` WHEN '数学' THEN score ELSE 0 END) as '数学',
SUM(CASE `subject` WHEN '英语' THEN score ELSE 0 END) as '英语',
SUM(CASE `subject` WHEN '政治' THEN score ELSE 0 END) as '政治' 
FROM tb_score 
GROUP BY userid;
或者
SELECT userid,
SUM(IF(`subject`='语文',score,0)) as '语文',
SUM(IF(`subject`='数学',score,0)) as '数学',
SUM(IF(`subject`='英语',score,0)) as '英语',
SUM(IF(`subject`='政治',score,0)) as '政治' 
FROM tb_score 
GROUP BY userid;

我们来看看 Doris 怎么实现这个行转列呢,有没有更简单、性能更好的一种方式


  1. 1.我们是不是可以首先将这个科目、成绩组成一个Map

  2. 2.然后在外层对这个 Map 进行遍历展开

  3. 3.从而完成这样一个行列转换呢

我们来看看实现

select 
 userid,
 IFNULL(map['语文'],0) as '语文',
 IFNULL(map['英语'],0) as '英语',
 IFNULL(map['数学'],0) as '数学',
 IFNULL(map['政治'],0) as '政治'
from  (
 select userid ,map_agg(subject,score) as map from tb_score group by userid
) t ;

这样实现上性能更好,我们来看一下效果

select
 ->     userid,
 ->     IFNULL(map['语文'],0) as '语文',
 ->     IFNULL(map['英语'],0) as '英语',
 ->     IFNULL(map['数学'],0) as '数学',
 ->     IFNULL(map['政治'],0) as '政治'
 -> from  (
 ->     select userid ,map_agg(subject,score) as map from tb_score group by userid
 -> ) t ;
+--------+--------+--------+--------+--------+
| userid | 语文   | 英语   | 数学   | 政治   |
+--------+--------+--------+--------+--------+
| 001    |     90 |     80 |     92 |      0 |
| 002    |     88 |   75.5 |     90 |      0 |
| 003    |     70 |     90 |     85 |     82 |
+--------+--------+--------+--------+--------+
3 rows in set (0.02 sec)

2. 列转行


实际使用中我们还有很多场景要把数据冲列转成行,下面我们来看一个例子,这个例子中每行是一个学生的,语文、数学、英语、政治的成绩,

3.png我们想转换成每门成绩都是独立的一行,转出的效果如下:

4.png

我们来看看一个宽表转成高表我们之前的是怎么实现,一般我们是通过union all的方式,每科我们都是一个单独的SQL语句,然后将这些SQL Unoin all 在一起得到我们想要的结果。

SELECT userid,'语文' AS course,cn_score AS score FROM tb_score1
UNION ALL
SELECT userid,'数学' AS course,math_score AS score FROM tb_score1
UNION ALL
SELECT userid,'英语' AS course,en_score AS score FROM tb_score1
UNION ALL
SELECT userid,'政治' AS course,po_score AS score FROM tb_score1
ORDER BY userid;

这样做的缺点:


  1. 1.SQL 冗余

  2. 2.大量的union all 也会带来性能问题

我们来看看 Doris 怎么实现,首先 Doris 提供了 Lateral view,其实就是用来和像类似explode这种UDTF函数联用的,lateral view会将 UDTF 生成的结果放到一个虚拟表中,然后这个虚拟表会和输入行进行 join来达到连接 UDTF 外的 select 字段的目的


还是以上面的例子来看,Doris我怎么对这个宽表转成高表,实现就是借助Lateral view

CREATE TABLE `tb_score1` (
 `id` int(11) NOT NULL,
 `userid` varchar(20) NOT NULL COMMENT '用户id',
 `cn_score` double NULL COMMENT '语文成绩',
 `math_score` double NULL COMMENT '数学成绩',
 `en_score` double NULL COMMENT '英语成绩',
 `po_score` double NULL COMMENT '政治成绩'
) ENGINE=OLAP
UNIQUE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"is_being_synced" = "false",
"storage_format" = "V2",
"light_schema_change" = "true",
"disable_auto_compaction" = "false",
"enable_single_replica_compaction" = "false"
);;
INSERT INTO `tb_score1` (`id`, `userid`, `cn_score`, `math_score`, `en_score`, `po_score`) VALUES (1, '001', 90, 92, 80, 0);
INSERT INTO `tb_score1` (`id`, `userid`, `cn_score`, `math_score`, `en_score`, `po_score`) VALUES (2, '002', 88, 90, 75.5, 0);
INSERT INTO `tb_score1` (`id`, `userid`, `cn_score`, `math_score`, `en_score`, `po_score`) VALUES (3, '003', 70, 85, 90, 82);
  1. 1.首先我借助Lateral view 形成一个 UserID、客户成绩组成一个字符(使用逗号连接),达到下面的效果
+--------+--------------------+
| userid | arr                |
+--------+--------------------+
| 001    | ["语文", "90"]     |
| 001    | ["数学", "92"]     |
| 001    | ["英语", "80"]     |
| 001    | ["政治", "0"]      |
| 002    | ["语文", "88"]     |
| 002    | ["数学", "90"]     |
| 002    | ["英语", "75.5"]   |
| 002    | ["政治", "0"]      |
| 003    | ["语文", "70"]     |
| 003    | ["数学", "85"]     |
| 003    | ["英语", "90"]     |
| 003    | ["政治", "82"]     |
+--------+--------------------+
12 rows in set (0.02 sec)
  1. 2.然后对这个上面的 arr 字符串,借助于 Doris 提供的 SPLIT_BY_STRING 函数完成字符串转数组的动作

  2. 3.最后遍历数组

  3. 4.完成列转行的效果
SELECT
 userid,
 element_at ( arr, 1 ) AS SUBJECT,
 element_at ( arr, 2 ) AS score 
FROM
 (
 SELECT
 userid,
 SPLIT_BY_STRING ( sub, ',' ) arr 
 FROM
 (
 SELECT
 userid,
 array (
 concat( '语文', ',', cn_score ),
 concat( '数学', ',', math_score ),
 concat( '英语', ',', en_score ),
 concat( '政治', ',', po_score )) AS scores 
 FROM
 tb_score1 
 ) t LATERAL VIEW explode ( scores ) tbl1 AS sub 
 ) aaa

最后的效果如下:

SELECT
 ->         userid,
 ->         element_at ( arr, 1 ) AS SUBJECT,
 ->         element_at ( arr, 2 ) AS score
 -> FROM
 ->         (
 ->         SELECT
 ->                 userid,
 ->                 SPLIT_BY_STRING ( sub, ',' ) arr
 ->         FROM
 ->                 (
 ->                 SELECT
 ->                         userid,
 ->                         array (
 ->                                 concat( '语文', ',', cn_score ),
 ->                                 concat( '数学', ',', math_score ),
 ->                                 concat( '英语', ',', en_score ),
 ->                         concat( '政治', ',', po_score )) AS scores
 ->                 FROM
 ->                         tb_score1
 ->                 ) t LATERAL VIEW explode ( scores ) tbl1 AS sub
 ->         ) aaa;
+--------+---------+-------+
| userid | SUBJECT | score |
+--------+---------+-------+
| 001    | 语文    | 90    |
| 001    | 数学    | 92    |
| 001    | 英语    | 80    |
| 001    | 政治    | 0     |
| 002    | 语文    | 88    |
| 002    | 数学    | 90    |
| 002    | 英语    | 75.5  |
| 002    | 政治    | 0     |
| 003    | 语文    | 70    |
| 003    | 数学    | 85    |
| 003    | 英语    | 90    |
| 003    | 政治    | 82    |
+--------+---------+-------+
12 rows in set (0.02 sec)


目录
相关文章
|
2月前
|
消息中间件 OLAP Kafka
Apache Doris 实时更新技术揭秘:为何在 OLAP 领域表现卓越?
Apache Doris 为何在 OLAP 领域表现卓越?凭借其主键模型、数据延迟、查询性能、并发处理、易用性等多方面特性的表现,在分析领域展现了独特的实时更新能力。
196 9
|
3月前
|
JSON 关系型数据库 Apache
十亿 JSON 秒级响应:Apache Doris vs ClickHouse,Elasticsearch,PostgreSQL
JSONBench 是一个为 JSON 数据而生的数据分析 Benchmark,在默认设置下,Doris 的性能表现是 Elasticsearch 的 2 倍,是 PostgreSQL 的 80 倍。调优后,Doris 查询整体耗时降低了 74%,对比原榜单第一的 ClickHouse 产品实现了 39% 的领先优势。本文详细描述了调优思路与 Doris 调优前后的性能表现,欢迎阅读了解~
520 0
十亿 JSON 秒级响应:Apache Doris vs ClickHouse,Elasticsearch,PostgreSQL
|
8天前
|
存储 自然语言处理 分布式计算
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
Apache Doris 3.1 正式发布!全面升级半结构化分析,支持 VARIANT 稀疏列与模板化 Schema,提升湖仓一体能力,增强 Iceberg/Paimon 集成,优化存储引擎与查询性能,助力高效数据分析。
108 3
Apache Doris 3.1 正式发布:半结构化分析全面升级,湖仓一体能力再跃新高
|
4天前
|
SQL 人工智能 数据挖掘
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
Apache Doris 4.0 原生集成 LLM 函数,将大语言模型能力深度融入 SQL 引擎,实现文本处理智能化与数据分析一体化。通过十大函数,支持智能客服、内容分析、金融风控等场景,提升实时决策效率。采用资源池化管理,保障数据一致性,降低传输开销,毫秒级完成 AI 分析。结合缓存复用、并行执行与权限控制,兼顾性能、成本与安全,推动数据库向 AI 原生演进。
40 0
Apache Doris 4.0 AI 能力揭秘(二):为企业级应用而生的 AI 函数设计与实践
|
2月前
|
存储 分布式计算 Apache
湖仓一体:小米集团基于 Apache Doris + Apache Paimon 实现 6 倍性能飞跃
小米通过将 Apache Doris(数据库)与 Apache Paimon(数据湖)深度融合,不仅解决了数据湖分析的性能瓶颈,更实现了 “1+1>2” 的协同效应。在这些实践下,小米在湖仓数据分析场景下获得了可观的业务收益。
368 9
湖仓一体:小米集团基于 Apache Doris + Apache Paimon 实现 6 倍性能飞跃
|
2月前
|
人工智能 运维 监控
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
本文基于 Apache Doris 数据运维治理 Agent 展开讨论,如何让 AI 成为 Doris 数据运维工程师和数据治理专家的智能助手,并在某些场景下实现对人工操作的全面替代。这种变革不仅仅是技术层面的进步,更是数据运维治理思维方式的根本性转变:从“被动响应”到“主动预防”,从“人工判断”到“智能决策”,从“孤立处理”到“协同治理”。
278 11
智能运维与数据治理:基于 Apache Doris 的 Data Agent 解决方案
|
2月前
|
SQL 存储 运维
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
本文介绍了 Apache Doris 在菜鸟的大规模落地的实践经验,菜鸟为什么选择 Doris,以及 Doris 如何在菜鸟从 0 开始,一步步的验证、落地,到如今上万核的规模,服务于各个业务线,Doris 已然成为菜鸟 OLAP 数据分析的最优选型。
154 2
Apache Doris 在菜鸟的大规模湖仓业务场景落地实践
|
2月前
|
SQL 存储 JSON
Apache Doris 2.1.10 版本正式发布
亲爱的社区小伙伴们,Apache Doris 2.1.10 版本已正式发布。2.1.10 版本对湖仓一体、半结构化数据类型、查询优化器、执行引擎、存储管理进行了若干改进优化。欢迎大家下载使用。
141 5
|
2月前
|
人工智能 自然语言处理 数据挖掘
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
在即将发布的 Apache Doris 4.0 版本中,我们正式引入了一系列 LLM 函数,将前沿的 AI 能力与日常的数据分析相结合,无论是精准提取文本信息,还是对评论进行情感分类,亦或生成精炼的文本摘要,皆可在数据库内部无缝完成。
122 0
Apache Doris 4.0 AI 能力揭秘(一):AI 函数之 LLM 函数介绍
|
4月前
|
人工智能 监控 数据挖掘
6/14 上海,Apache Doris x 阿里云 SelectDB AI 主题线下 Meetup 正式开启报名!
6 月 14 日,由 Apache Doris 社区、飞轮科技、阿里云联合发起的湖仓数智融合、AI 洞见未来:Apache Doris x 阿里云 SelectDB 联合 Meetup 将在上海·汇付天下总部大楼正式开启,邀您一同探索 AI 与数据分析的融合实践!
321 76

推荐镜像

更多