Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

AutoMQ 生态集成 Apache Doris

简介: Apache Doris 是一个高性能的分析型数据库,以其亚秒级查询响应和对复杂分析的支持而知名。它适合报表分析、即席查询等场景,能从 AutoMQ 通过 Routine Load 导入 Kafka 主题数据。本文详述了如何配置 Doris 环境,创建测试数据,以及设置 Routine Load 作业从 AutoMQ 导入 JSON 数据到 Doris 表的过程。最后,文中展示了验证数据成功导入的方法。Apache Doris 提供了低成本、高弹性的数据处理解决方案,其团队由 Apache RocketMQ 和 Linux LVS 的核心成员组成。

Apache Doris 是一个基于 MPP 架构的高性能、实时的分析型数据库,以极速易用的特点被人们所熟知,仅需亚秒级响应时间即可返回海量数据下的查询结果,不仅可以支持高并发的点查询场景,也能支持高吞吐的复杂分析场景。基于此,Apache Doris 能够较好的满足报表分析、即席查询、统一数仓构建、数据湖联邦查询加速等使用场景,用户可以在此之上构建用户行为分析、AB 实验平台、日志检索分析、用户画像分析、订单分析等应用。本文将介绍如何使用 Apache Doris Routine Load 将 AutoMQ 中的数据导入 Doris。详细了解 Routine Load 请参考 Routine Load 基本原理文档。

01

环境准备

1.1 准备 Apache Doris 和测试数据

确保当前已准备好可用的 Apache Doris 集群。为了便于演示,我们参考 Docker 部署 Doris 文档在 Linux 上部署了一套测试用的 Doris 环境。创建库和测试表:


create database automq_db;
CREATE TABLE automq_db.users (
                                 id bigint NOT NULL,
                                 name string NOT NULL,
                                 timestamp string NULL,
                                 status string NULL

) DISTRIBUTED BY hash (id) PROPERTIES ('replication_num' = '1');
AI 代码解读

1.2 准备 Kafka 命令行工具

从 AutoMQ Releases 下载最新的 TGZ 包并解压。假设解压目录为 AUTOMQHOME使AUTOMQ_HOME/bin 下的工具命令来创建主题和生成测试数据。

1.3 准备 AutoMQ 和测试数据

参考 AutoMQ 官方部署文档部署一套可用的集群,确保 AutoMQ 与 Doris 之间保持网络连通。在 AutoMQ 中快速创建一个名为 example_topic 的主题,并向其中写入一条测试 JSON 数据,按照以下步骤操作。

创建 Topic

使用 Apache Kafka 命令行工具创建主题,需要确保当前拥有 Kafka 环境的访问权限并且 Kafka 服务正在运行。以下是创建主题的命令示例:

 $AUTOMQ_HOME/bin/kafka-topics.sh --create --topic exampleto_topic --bootstrap-server 127.0.0.1:9092  --partitions 1 --replication-factor 1
AI 代码解读

注意:在执行命令时,需要将 topic 和 bootstarp-server 替换为实际使用的 AutoMQ Bootstarp Server 地址。

创建完主题后,可以使用以下命令来验证主题是否已成功创建。

 $AUTOMQ_HOME/bin/kafka-topics.sh --describe example_topic --bootstrap-server 127.0.0.1:9092
AI 代码解读

生成测试数据

生成一条 JSON 格式的测试数据,和前文的表需要对应。

 {
  "id": 1,
  "name": "测试用户",
  "timestamp": "2023-11-10T12:00:00",
  "status": "active"
}
AI 代码解读

写入测试数据

通过 Kafka 的命令行工具或编程方式将测试数据写入到名为 example_topic 的主题中。下面是一个使用命令行工具的示例:

 echo '{"id": 1, "name": "测试用户", "timestamp": "2023-11-10T12:00:00", "status": "active"}' | sh kafka-console-producer.sh --broker-list 127.0.0.1:9092 --topic example_topic
AI 代码解读

使用如下命令可以查看刚写入的 topic 数据:

 sh $AUTOMQ_HOME/bin/kafka-console-consumer.sh --bootstrap-server 127.0.0.1:9092 --topic example_topic --from-beginning
AI 代码解读

注意:在执行命令时,需要将 topic 和 bootstarp-server 替换为实际使用的 AutoMQ Bootstarp Server 地址。

02

创建 Routine Load 导入作业

在 Apache Doris 的命令行中创建一个接收 JSON 数据的 Routine Load 作业,用来持续导入 AutoMQ Kafka topic 中的数据。具体 Routine Load 的参数说明请参考 Doris Routine Load。

 CREATE ROUTINE LOAD automq_example_load ON users
COLUMNS(id, name, timestamp, status)
PROPERTIES
(
    "format" = "json",
    "jsonpaths" = "[\"$.id\",\"$.name\",\"$.timestamp\",\"$.status\"]"
 )
FROM KAFKA
(
    "kafka_broker_list" = "127.0.0.1:9092",
    "kafka_topic" = "example_topic",
    "property.kafka_default_offsets" = "OFFSET_BEGINNING"
);
AI 代码解读

注意:在执行命令时,需要将 kafka_broker_list 替换为实际使用的 AutoMQ Bootstarp Server 地址。

03

验证数据导入

首先,检查 Routine Load 导入作业的状态,确保任务正在运行中。

 show routine load\G;
AI 代码解读

然后查询 Doris 数据库中的相关表,可以看到数据已经被成功导入。

 select * from users;
+------+--------------+---------------------+--------+
| id   | name         | timestamp           | status |
+------+--------------+---------------------+--------+
|    1 | 测试用户     | 2023-11-10T12:00:00 | active |
|    2 | 测试用户     | 2023-11-10T12:00:00 | active |
+------+--------------+---------------------+--------+
2 rows in set (0.01 sec)
AI 代码解读

END

关于我们

我们是来自 Apache RocketMQ 和 Linux LVS 项目的核心团队,曾经见证并应对过消息队列基础设施在大型互联网公司和云计算公司的挑战。现在我们基于对象存储优先、存算分离、多云原生等技术理念,重新设计并实现了 Apache Kafka 和 Apache RocketMQ,带来高达 10 倍的成本优势和百倍的弹性效率提升。

🌟 GitHub 地址:https://github.com/AutoMQ/automq
💻 官网:https://www.automq.com
👀 B站:AutoMQ官方账号
🔍 视频号:AutoMQ

目录
相关文章
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
随着云基础设施的成熟,Apache Doris 3.0 正式支持了存算分离全新模式。基于这一架构,能够实现更低成本、极致弹性以及负载隔离。本文将介绍存算分离架构及其优势,并通过导入性能、查询性能、资源成本的测试,直观展现存算分离架构下的性能表现,为读者提供具体场景下的使用参考。
云原生时代的架构革新,Apache Doris 存算分离如何实现弹性与性能双重提升
网易游戏 x Apache Doris:湖仓一体架构演进之路
网易游戏 Apache Doris 集群超 20 个 ,总节点数百个,已对接内部 200+ 项目,日均查询量超过 1500 万,总存储数据量 PB 级别。
网易游戏 x Apache Doris:湖仓一体架构演进之路
Apache Doris & SelectDB 技术能力全面解析
本文将对 Doris & SelectDB 适合的分析场景和技术能力进行概述解析
Apache Doris & SelectDB 技术能力全面解析
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
秉承“以场景驱动创新” 的核心理念,持续深耕三大核心场景的关键能力,并对大模型 GenAI 场景的融合应用进行重点投入,为智能时代构建实时、高效、统一的数据底座。
Apache Doris 2025 Roadmap:构建 GenAI 时代实时高效统一的数据底座
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
拉卡拉早期基于 Lambda 架构构建数据系统面临存储成本高、实时写入性能差、复杂查询耗时久、组件维护复杂等问题。为此,拉卡拉选择使用 Apache Doris 替换 Elasticsearch、Hive、Hbase、TiDB、Oracle / MySQL 等组件,实现了 OLAP 引擎的统一、查询性能提升 15 倍、资源减少 52% 的显著成效。
拉卡拉 x Apache Doris:统一金融场景 OLAP 引擎,查询提速 15 倍,资源直降 52%
Apache Doris 3.0.4 版本正式发布
该版本持续在存算分离、湖仓一体、异步物化视图等方面进行改进提升与问题修复
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
天翼云基于 Apache Doris 成功落地项目已超 20 个,整体集群规模超 50 套,部署节点超 3000 个,存储容量超 15PB
天翼云:Apache Doris + Iceberg 超大规模湖仓一体实践
Apache Doris 2.1.9 版本正式发布
Apache Doris 2.1.9 版本正式发布,欢迎使用~
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等