apache日志切割

简介:

系统在日常工作中会记录很多的文件日志,如果都放在一个里面,我们在整理查找的时候,会很繁琐,增加工作量,所以我们要用到日志切割,便于我们分类归档。

首先编辑“虚拟主机配置文件”

[root@LAMPLINUX ~]# vim /usr/local/apache2/conf/extra/httpd-vhosts.conf

我们将CustomLog和ErrorLog打开,并将后面的网址改为我们的主域名,

    ErrorLog "lam.com-error_log"

    CustomLog "lam.com-access_log" common

(补充:我们可以在“日志目录”:/usr/local/apache2/logs 的目录下查看日志文件。)

然后我们编辑“主配置文件”

[root@LAMPLINUX ~]# vim /usr/local/apache2/conf/httpd.conf

查询 /common,找到

 LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-Agent}i\"" combined

我们了解知道 combined 比 common 更好用,同时也可以使用自定义格式,比如 combinedio,

(%h是IP,%u是用户,%t是时间,%r是动作%{Referer}i是论坛主页)

所以这里我们用 combined,编辑虚拟主机配置文件:

CustomLog "lam.com-access_log" common 改为-> combined,即

CustomLog "lam.com-access_log"combined

最后,我们需要把日志以每日日期归档,即“切割”,并删除旧的日志。

编辑虚拟主机配置文件

[root@LAMPLINUX ~]# vim /usr/local/apache2/conf/extra/httpd-vhosts.conf

Errorlog信息太少,不需要显示太细致,一般不更改;

CustomLog "|/usr/local/apache2/bin/rotatelogs -l /usr/local/apache2/logs/lam.com-access_%Y%m%d_log 86400"combined

:wq

[root@LAMPLINUX ~]# apachectl -t

[root@LAMPLINUX ~]# apachectl -restart

查看日志目录

[root@LAMPLINUX ~]# ls /usr/local/apache2/logs

error_log     lam.com-access_20150711_log



本文转自 听丶飞鸟说 51CTO博客,原文链接:http://blog.51cto.com/286577399/1673204

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
|
存储 监控 安全
实时记录和查看Apache 日志
Apache 是一个开源、跨平台的 Web 服务器,保护其平台需监控活动和事件。Apache 日志分为访问日志和错误日志,分别记录用户请求和服务器错误信息。EventLog Analyzer 是一款强大的日志查看工具,提供集中收集、分析、实时警报和安全监控功能,帮助管理员识别趋势、检测威胁并确保合规性。通过直观的仪表板和自动化响应,它简化了大规模日志管理,增强了 Apache 服务器的安全性和性能。
324 5
|
8月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
10月前
|
监控 安全 BI
优化 Apache 日志记录的 5 个最佳实践
Apache 日志记录对于维护系统运行状况和网络安全至关重要,其核心包括访问日志与错误日志的管理。通过制定合理的日志策略,如选择合适的日志格式、利用条件日志减少冗余、优化日志级别、使用取证模块提升安全性及实施日志轮换,可有效提高日志可用性并降低系统负担。此外,借助 Eventlog Analyzer 等专业工具,能够实现日志的高效收集、可视化分析与威胁检测,从而精准定位安全隐患、评估服务器性能,并满足合规需求,为强化网络安全提供有力支持。
272 0
优化 Apache 日志记录的 5 个最佳实践
|
存储 运维 监控
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
中信银行信用卡中心每日新增日志数据 140 亿条(80TB),全量归档日志量超 40PB,早期基于 Elasticsearch 构建的日志云平台,面临存储成本高、实时写入性能差、文本检索慢以及日志分析能力不足等问题。因此使用 Apache Doris 替换 Elasticsearch,实现资源投入降低 50%、查询速度提升 2~4 倍,同时显著提高了运维效率。
809 3
金融场景 PB 级大规模日志平台:中信银行信用卡中心从 Elasticsearch 到 Apache Doris 的先进实践
|
存储 监控 安全
实时记录和查看Apache 日志
Apache 是一个开源、跨平台的Web服务器,保护其安全依赖于监控活动和分析访问日志。日志分为访问日志和错误日志,前者记录用户请求及响应情况,后者记录服务器错误信息。EventLog Analyzer等工具可集中收集、分析日志,提供直观的仪表板和实时警报,帮助识别趋势、异常和威胁,确保服务器稳定性和安全性,并支持合规管理。
345 5
|
4月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
792 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
454 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
6月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
793 9
Apache Flink:从实时数据分析到实时AI
|
6月前
|
SQL 人工智能 API
Apache Flink 2.1.0: 面向实时 Data + AI 全面升级,开启智能流处理新纪元
Apache Flink 2.1.0 正式发布,标志着实时数据处理引擎向统一 Data + AI 平台迈进。新版本强化了实时 AI 能力,支持通过 Flink SQL 和 Table API 创建及调用 AI 模型,新增 Model DDL、ML_PREDICT 表值函数等功能,实现端到端的实时 AI 工作流。同时增强了 Flink SQL 的流处理能力,引入 Process Table Functions(PTFs)、Variant 数据类型,优化流式 Join 及状态管理,显著提升作业稳定性与资源利用率。
713 0
|
5月前
|
人工智能 运维 Java
Flink Agents:基于Apache Flink的事件驱动AI智能体框架
本文基于Apache Flink PMC成员宋辛童在Community Over Code Asia 2025的演讲,深入解析Flink Agents项目的技术背景、架构设计与应用场景。该项目聚焦事件驱动型AI智能体,结合Flink的实时处理能力,推动AI在工业场景中的工程化落地,涵盖智能运维、直播分析等典型应用,展现其在AI发展第四层次——智能体AI中的重要意义。
1913 27
Flink Agents:基于Apache Flink的事件驱动AI智能体框架

推荐镜像

更多