m基带信号的软同步接收系统matlab性能仿真,对比统计同步,BTDT,CZT,ZOOM-FFT以及频谱细化法

简介: m基带信号的软同步接收系统matlab性能仿真,对比统计同步,BTDT,CZT,ZOOM-FFT以及频谱细化法

1.算法仿真效果
matlab2022a仿真结果如下:

93967d3f430cea0d822fc05e51f29ec6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

统计同步

3c4be51018272b9218df0665a31f522d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

BTDT

8ba4a7727d8e83c159488ac4cec9bba4_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

CZT

eac7b62911cd40a36cd4d90a10e11e02_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

ZOOM-FFT

59476777e3e3377c7e95d71a5fd17a4a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

频谱细化法

903278ba5ffc654deea6c60f84dac753_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2.算法涉及理论知识概要
基带信号的软同步接收系统是通信系统中非常重要的一部分。在多种通信系统中,如无线通信、光纤通信等,接收到的信号一般都是基带信号。为了有效地处理这些信号,需要对其进行同步接收。这里的“同步”指的是将接收到的信号与发送端的信号在时间上对齐。在多种基带信号同步接收技术中,以下五种方法较为常见:统计同步、BTDT、CZT、ZOOM-FFT以及频谱细化法。下面我们来详细介绍这些方法的原理和数学公式。

    统计同步:这种方法是基于信号统计特性的同步算法。其基本原理是:在接收到的信号序列中,通过寻找最有可能的抽样点位置来实现信号同步。具体来说,假设接收到的信号为y(t),先对其进行滑动窗口处理(窗口长度为N),得到一系列的子序列y(n), n=tN。接着对每个子序列进行能量计算,得到En=Σ|y(n)|²。选择具有最大能量的子序列作为同步点,即选取t0使得Emax=maxEn。用t0乘以N,即可得到信号同步点的时间。

    BTDT:BTDT(基于时域的自适应阈值)是一种在时域上对信号进行同步跟踪的方法。其基本原理是:通过对接收到的信号进行自适应阈值处理,得到一个时域的门限,然后利用这个门限对信号进行二值化,进而找到信号的同步点。具体来说,假设接收到的信号为y(t),首先计算其能量E=Σ|y(t)|²,然后根据阈值公式T=αE计算阈值(其中α为常数)。接着对信号进行二值化处理,即当|y(t)|²>T时,令y(t)=1;当|y(t)|²<T时,令y(t)=0。最后通过滑动窗口(窗口长度为N)找到连续为1的子序列,该子序列的起点即为信号的同步点。

    CZT:CZT(基于变换域的自适应阈值)是一种在变换域上对信号进行同步跟踪的方法。其基本原理是:通过对接收到的信号进行快速傅里叶变换(FFT),将其从时域转换到频域,然后在频域上对信号进行阈值处理,进而找到信号的同步点。具体来说,假设接收到的信号为y(t),首先对其进行FFT处理,得到频域表示Y(f)。接着根据阈值公式T=αE(f)计算每个频率分量的阈值(其中α为常数,E(f)为每个频率分量的能量)。对每个频率分量进行二值化处理,即当|Y(f)|²>T时,令Y(f)=1;当|Y(f)|²<T时,令Y(f)=0。最后将所有频率分量的二值化结果进行逆FFT处理,得到时域上的二值化信号。通过滑动窗口找到连续为1的子序列,该子序列的起点即为信号的同步点。

    ZOOM-FFT:ZOOM-FFT(变步长快速傅里叶变换)是一种加速FFT运算的方法。其基本原理是:通过对FFT运算进行变步长优化,使得在频率较高或较低的部分使用较小的窗口大小(即步长),而在频率适中的部分使用较大的窗口大小,以此来提高FFT运算的速度和精度。具体来说,假设接收到的信号为y(t),首先对其进行分段处理,将整个信号分成若干段(每段长度为N),然后在每段上分别进行FFT运算。对于频率较低的部分(即前几段),使用较小的窗口大小(即步长),对于频率较高的部分(即后几段),使用较大的窗口大小。通过这种方式,可以在保证精度的同时提高运算速度。

   频谱细化法:频谱细化法是一种通过对接收到的信号进行多次频谱分析,找到最接近真实频率的谱峰位置来实现信号同步的方法。其基本原理是:假设接收到的信号为y(t),先对其进行傅里叶变换得到频谱Y(f),然后在一定频率范围内对频谱进行多次细化分析(如采用FFT或其他快速算法),找到最接近真实频率的谱峰位置。该谱峰位置对应的频率即为信号的同步点。

3.MATLAB核心程序```..........................................................................
b = hanning(127);
msg = filter(b,1,msg2);
msg = msg/max(msg);
msg(1:1024) = [];
%调制
ff = cos(2pifreqcarrier.[0:length(msg)-1]/freqSample);
signalSample = msg.
ff;
t = length(signalSample);
[f,sf] = T2Fv2(t,signalSample);

figure;
subplot(311);
plot(msg);
title('测试随机数');
axis([1,length(msg),-1.5,1.5]);
subplot(312);
plot(f,abs(sf));
xlabel('频率 Mhz');
subplot(313);
plot(sf);
xlabel('归一化频率 点数');

%==========================计算Fcourse========================
sf1(1) = 0;
index = find(sf== max(sf));
I = 3;
Fcourse = index;
tic;
%==========================利用BTDT计算Fpresize================
Fth = Fcourse;
N = length(msg);
for k = 1:I
Ntemp = N*(Fcourse-0.5)/Fth;
numTemp = round(Ntemp);
[ftemp,sftemp]=T2Fv2(t,signalSample(1:numTemp));
sftemp(1) = 0;
indexTemp = find(sftemp== max(sftemp));
if sftemp(indexTemp)>sftemp(indexTemp-1)
Fth = Fth+(0.5)^(k+1);
else
Fth = Fth-(0.5)^(k+1);
end
end
format long;
Fpresize = Fth;
fprintf('%6.5f\n',Fpresize);
clc;
t=toc;

figure;
%恢复眼图
delta = (Fcourse)/length(msg);
Xpoint = mod((1:length(msg))delta,64);
Ypoint = msg;
subplot(211)
tip = ceil((1:length(msg))
delta);
for k = 1:max(tip)
indexSS = find(tip==k);
plot(Xpoint(indexSS),Ypoint(indexSS));
hold on;
end
axis([2.3,18.4,-0.96,0.96]);
title('标准眼图');
grid on;

%恢复眼图
delta = Fpresize/length(msg);
Xpoint = mod((1:length(msg))delta,64);
Ypoint = msg;
subplot(212)
tip = ceil((1:length(msg))
delta);
for k = 1:max(tip)
indexSS = find(tip==k);
plot(Xpoint(indexSS),Ypoint(indexSS));
hold on;
end
axis([2.3,18.4,-0.96,0.96]);
title('同步之后眼图');
grid on;

p=100*abs(Fpresize-Fcourse)/Fcourse;
fprintf('估计精度:');
fprintf('%2.4f',p);
fprintf('%%\n');

fprintf('仿真时间:');
fprintf('%2.4f',t);
fprintf('s\n');
save r2.mat t p
```

相关文章
|
6天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
6天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
3天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
5天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
4天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
120 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)