阿里云大数据ACA及ACP复习题(441~450)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)

441.DataWorks中,如果当前工作流/节点任务存在上游任务,则调度执行时,必须满足( BC )等条件才可以调度执行
A:上游任务已经执行
B:上游任务已经执行并返回成功
C:自身定制时间已到或已过
D:自身定制时间未到

解析:工作流执行的条件:1、上游节点返回成功 且 2、定时时间已到或已超过定时时间(考虑上游任务晚于下游任务定时时间或资源紧张)

442.大数据((Big Data),是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。以下哪些属于大数据的处理思路?( AB )
A:复杂问题简单化
B:一个大向题拆分成多个小问题
C:复杂问题作为一个整体进行分析
D:小问题直接忽略不计

解析:大数据的处理思路:减治:将问题化简成一个更简单的能处理的问题 分治:将问题拆分成多个可以简单求解的小问题

443.通过Quick BI连接外部数据源,进行数据分析和报表搭建时,主要分为以下哪几个( ACEF )步骤。
A:连接数据源
B:数据加工
C:数据建模
D:配置监控告警
E:数据可视化分析
F:发布共享

解析https://help.aliyun.com/document_detail/161417.html?spm=a2c4g.33813.0.i5
步骤一:连接数据源
步骤二:数据建模
步骤三:数据可视化分析
步骤四:发布共享

444.以下关于阿里云Flink版框架的描述,描述正确的是?( D )
A:Flink版运行在阿里云容器服务和ECS等SaaS系统上
B:Flink版与Apache Flink功能相同,但相互不兼容
C:Flink是一个流批一体的计算框架
D:将各种不同的实时数据源中的数据进行实时订阅、处理与分析。

解析:Flink主要的应用场景就是将各种不同的实时数据源中的数据进行实时的订阅、处理、分析,并把得到的结果写入到其他的在线存储之中,让您直接生产使用。

445.在传统的大数据批处理系统中,关于Mapreduce缺点,下列说法正确的是( ABCD )?
A:中间结果多
B:不擅长实时计算
C:延迟高
D:磁盘IO开销大

解析:MapReduce的缺点:
1、无法在毫秒或秒级内返回结果;
2、输入数据集是动态的,不能动态变化;
3、每次作业后输出结果都会写入磁盘、会造成大量磁盘IO,导致性能低下;
4、Mapreduce因分布式计算 并行能力强。

446.下列( B )属于某开源分布式文件系统,且适合以文件为载体提供在线服务?
A:OSS
B:FastDFS
C:HDFS
D:S3

解析:FastDFS是一个开源的分布式文件系统,它对文件进行管理,功能包括:文件存储、文件同步、文件访问(文件上传、文件下载)等,解决了大容量存储和负载均衡的问题。 特别适合以文件为载体的在线服务, 如相册网站,视频网站等等。

447.在Spark SQL架构中,( A )组件负责执行计划生成和优化?
A:Catalyst
B:Execution
C:SQL Parser
D:Physical Plan

解析:Spark SQL执行计划生成和优化都由Catalyst(函数式关系查询优化框架)负责。

448.MapReduce的优点有哪些?( AB )
A:实现简单接口,即可完成分布式程序
B:使用在分布式计算框架,所以当一台机器失败后,可以自动切换至其他节点运行该任务
C:只适合少量的数据处理
D:可以通过配置Map任务数来扩展计算能力

解析
MapReduce的优点:
1、易于编程。用户只关心业务逻辑,实现框架的接口。
2、良好的扩展性。可以动态增加服务器,解决计算资源资源不足问题。
3、高容错性。任何一台机器挂掉,可以将任务转移到其他节点。
4、适合海量数据计算(TB/PB),几千台服务器共同计算。

449.MaxCompute集成AI能力体现在( ABC )?
A:与PAI的无缝集成
B:与Spark-Mllib结合
C:使用Python的第三方机器学习库
D:与Mahout框架的集成

解析:链接:https://help.aliyun.com/document_detail/27800.html?spm=a2c4g.466617.0.i3
集成AI能力: 与机器学习平台PAI无缝集成,提供强大的机器学习处理能力。 您可以使用熟悉的Spark-ML开展智能分析。 使用Python机器学习三方库。

450.数据分析有两大要素,一为理论,二为技术,理论与技术的结合,才真正的构成了数据分析。那么关于数据分析的理论与技术,下面说法正确的是?( BD )
A:数据分析理论包含统计学、机器学习、数据挖掘算法、数据存储
B:数据分析技术包含单机分析工具、单机编程语言(如Python等)、大数据处理技术(如MapReduce、Spark、Hive等)
C:大数据时代前以少量数据分析为主,编写单机程序,计算分析结果
D:大数据时代后借助分布式计算框架,处理海量数据,完成数据分析

解析:数据分析技术包含单机分析工具、单机编程语言(如Python等)、大数据处理技术(如MapReduce、Spark、Hive等)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
人工智能 分布式计算 DataWorks
连续四年!阿里云领跑中国公有云大数据平台
近日,国际数据公司(IDC)发布《中国大数据平台市场份额,2023:数智融合时代的真正到来》报告——2023年中国大数据平台公有云服务市场规模达72.2亿元人民币,其中阿里巴巴市场份额保持领先,占比达40.2%,连续四年排名第一。
141 12
|
2月前
|
人工智能 Cloud Native 数据管理
重磅升级,阿里云发布首个“Data+AI”驱动的一站式多模数据平台
阿里云发布首个AI多模数据管理平台DMS,助力业务决策提效10倍
210 17
|
2月前
|
SQL 人工智能 大数据
阿里云牵头起草!首个大数据批流融合国家标准发布
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
70 7
|
2月前
|
SQL 人工智能 大数据
首个大数据批流融合国家标准正式发布,阿里云为牵头起草单位!
近日,国家市场监督管理总局、国家标准化管理委员会正式发布大数据领域首个批流融合国家标准 GB/T 44216-2024《信息技术 大数据 批流融合计算技术要求》,该标准由阿里云牵头起草,并将于2025年2月1日起正式实施。
|
2月前
|
存储 SQL 分布式计算
Java连接阿里云MaxCompute例
要使用Java连接阿里云MaxCompute数据库,首先需在项目中添加MaxCompute JDBC驱动依赖,推荐通过Maven管理。避免在代码中直接写入AccessKey,应使用环境变量或配置文件安全存储。示例代码展示了如何注册驱动、建立连接及执行SQL查询。建议使用RAM用户提升安全性,并根据需要配置时区和公网访问权限。具体步骤和注意事项请参考阿里云官方文档。
|
2月前
|
机器学习/深度学习 数据可视化 大数据
阿里云大数据的应用示例
阿里云大数据应用平台为企业提供高效数据处理与业务洞察工具,涵盖Quick BI、DataV及PAI等核心产品。DT203课程通过实践教学,帮助学员掌握数据可视化、报表设计及机器学习分析技能,提升数据驱动决策能力。Quick BI简化复杂数据分析,DataV打造震撼可视化大屏,PAI支持全面的数据挖掘与算法应用。课程面向CSP、ISV及数据工程师等专业人士,为期两天,结合面授与实验,助力企业加速数字化转型。完成课程后,学员将熟练使用阿里云工具进行数据处理与分析。[了解更多](https://edu.aliyun.com/training/DT203)
|
3月前
|
机器学习/深度学习 分布式计算 BI
MaxCompute 与阿里云其他服务的协同工作
【8月更文第31天】在当今的数据驱动时代,企业需要处理和分析海量数据以获得有价值的洞察。阿里云提供了一系列的服务来满足不同层次的需求,从数据存储到高级分析。MaxCompute(原名 ODPS)作为阿里云的大规模数据处理平台,提供了强大的计算能力和丰富的功能,可以与阿里云的其他服务无缝集成,形成完整的大数据解决方案。本文将探讨 MaxCompute 如何与其他阿里云服务协同工作,包括存储服务 OSS、数据分析服务 Quick BI 以及机器学习平台 PAI。
40 1
|
16天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
17天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
41 3
|
16天前
|
SQL 消息中间件 大数据
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
大数据-159 Apache Kylin 构建Cube 准备和测试数据(一)
32 1