阿里云大数据ACA及ACP复习题(441~450)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 本人备考阿里云大数据考试时自行收集准备的题库,纯手工整理的,能够覆盖到今年7月份,应该是目前最新的,发成文章希望大家能一起学习,不要花冤枉钱去买题库背了,也希望大家能够顺利通关ACA和ACP考试(自己整理解析也需要时间,可能有更新不及时的情况哈)

441.DataWorks中,如果当前工作流/节点任务存在上游任务,则调度执行时,必须满足( BC )等条件才可以调度执行
A:上游任务已经执行
B:上游任务已经执行并返回成功
C:自身定制时间已到或已过
D:自身定制时间未到

解析:工作流执行的条件:1、上游节点返回成功 且 2、定时时间已到或已超过定时时间(考虑上游任务晚于下游任务定时时间或资源紧张)

442.大数据((Big Data),是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。以下哪些属于大数据的处理思路?( AB )
A:复杂问题简单化
B:一个大向题拆分成多个小问题
C:复杂问题作为一个整体进行分析
D:小问题直接忽略不计

解析:大数据的处理思路:减治:将问题化简成一个更简单的能处理的问题 分治:将问题拆分成多个可以简单求解的小问题

443.通过Quick BI连接外部数据源,进行数据分析和报表搭建时,主要分为以下哪几个( ACEF )步骤。
A:连接数据源
B:数据加工
C:数据建模
D:配置监控告警
E:数据可视化分析
F:发布共享

解析https://help.aliyun.com/document_detail/161417.html?spm=a2c4g.33813.0.i5
步骤一:连接数据源
步骤二:数据建模
步骤三:数据可视化分析
步骤四:发布共享

444.以下关于阿里云Flink版框架的描述,描述正确的是?( D )
A:Flink版运行在阿里云容器服务和ECS等SaaS系统上
B:Flink版与Apache Flink功能相同,但相互不兼容
C:Flink是一个流批一体的计算框架
D:将各种不同的实时数据源中的数据进行实时订阅、处理与分析。

解析:Flink主要的应用场景就是将各种不同的实时数据源中的数据进行实时的订阅、处理、分析,并把得到的结果写入到其他的在线存储之中,让您直接生产使用。

445.在传统的大数据批处理系统中,关于Mapreduce缺点,下列说法正确的是( ABCD )?
A:中间结果多
B:不擅长实时计算
C:延迟高
D:磁盘IO开销大

解析:MapReduce的缺点:
1、无法在毫秒或秒级内返回结果;
2、输入数据集是动态的,不能动态变化;
3、每次作业后输出结果都会写入磁盘、会造成大量磁盘IO,导致性能低下;
4、Mapreduce因分布式计算 并行能力强。

446.下列( B )属于某开源分布式文件系统,且适合以文件为载体提供在线服务?
A:OSS
B:FastDFS
C:HDFS
D:S3

解析:FastDFS是一个开源的分布式文件系统,它对文件进行管理,功能包括:文件存储、文件同步、文件访问(文件上传、文件下载)等,解决了大容量存储和负载均衡的问题。 特别适合以文件为载体的在线服务, 如相册网站,视频网站等等。

447.在Spark SQL架构中,( A )组件负责执行计划生成和优化?
A:Catalyst
B:Execution
C:SQL Parser
D:Physical Plan

解析:Spark SQL执行计划生成和优化都由Catalyst(函数式关系查询优化框架)负责。

448.MapReduce的优点有哪些?( AB )
A:实现简单接口,即可完成分布式程序
B:使用在分布式计算框架,所以当一台机器失败后,可以自动切换至其他节点运行该任务
C:只适合少量的数据处理
D:可以通过配置Map任务数来扩展计算能力

解析
MapReduce的优点:
1、易于编程。用户只关心业务逻辑,实现框架的接口。
2、良好的扩展性。可以动态增加服务器,解决计算资源资源不足问题。
3、高容错性。任何一台机器挂掉,可以将任务转移到其他节点。
4、适合海量数据计算(TB/PB),几千台服务器共同计算。

449.MaxCompute集成AI能力体现在( ABC )?
A:与PAI的无缝集成
B:与Spark-Mllib结合
C:使用Python的第三方机器学习库
D:与Mahout框架的集成

解析:链接:https://help.aliyun.com/document_detail/27800.html?spm=a2c4g.466617.0.i3
集成AI能力: 与机器学习平台PAI无缝集成,提供强大的机器学习处理能力。 您可以使用熟悉的Spark-ML开展智能分析。 使用Python机器学习三方库。

450.数据分析有两大要素,一为理论,二为技术,理论与技术的结合,才真正的构成了数据分析。那么关于数据分析的理论与技术,下面说法正确的是?( BD )
A:数据分析理论包含统计学、机器学习、数据挖掘算法、数据存储
B:数据分析技术包含单机分析工具、单机编程语言(如Python等)、大数据处理技术(如MapReduce、Spark、Hive等)
C:大数据时代前以少量数据分析为主,编写单机程序,计算分析结果
D:大数据时代后借助分布式计算框架,处理海量数据,完成数据分析

解析:数据分析技术包含单机分析工具、单机编程语言(如Python等)、大数据处理技术(如MapReduce、Spark、Hive等)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
13天前
|
存储 人工智能 数据管理
|
6天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
12天前
|
机器学习/深度学习 分布式计算 数据挖掘
MaxFrame 性能评测:阿里云MaxCompute上的分布式Pandas引擎
MaxFrame是一款兼容Pandas API的分布式数据分析工具,基于MaxCompute平台,极大提升了大规模数据处理效率。其核心优势在于结合了Pandas的易用性和MaxCompute的分布式计算能力,无需学习新编程模型即可处理海量数据。性能测试显示,在涉及`groupby`和`merge`等复杂操作时,MaxFrame相比本地Pandas有显著性能提升,最高可达9倍。适用于大规模数据分析、数据清洗、预处理及机器学习特征工程等场景。尽管存在网络延迟和资源消耗等问题,MaxFrame仍是处理TB级甚至PB级数据的理想选择。
39 4
|
20天前
|
SQL DataWorks 数据可视化
阿里云DataWorks评测:大数据开发治理平台的卓越表现
阿里云DataWorks是一款集数据集成、开发、分析与管理于一体的大数据平台,支持多种数据源无缝整合,提供可视化ETL工具和灵活的任务调度机制。其内置的安全体系和丰富的插件生态,确保了数据处理的高效性和安全性。通过实际测试,DataWorks展现了强大的计算能力和稳定性,适用于中小企业快速搭建稳定高效的BI系统。未来,DataWorks将继续优化功能,降低使用门槛,并推出更多灵活的定价方案,助力企业实现数据价值最大化。
|
20天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
57 2
|
2月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据生态圈体系
阿里云大数据计算服务MaxCompute(原ODPS)提供大规模数据存储与计算,支持离线批处理。针对实时计算需求,阿里云推出Flink版。此外,阿里云还提供数据存储服务如OSS、Table Store、RDS和DRDS,以及数据分析平台DataWorks、Quick BI和机器学习平台PAI,构建全面的大数据生态系统。
85 18
|
15天前
|
SQL 存储 分布式计算
阿里云 Paimon + MaxCompute 极速体验
Paimon 和 MaxCompute 的对接经历了长期优化,解决了以往性能不足的问题。通过半年紧密合作,双方团队专门提升了 Paimon 在 MaxCompute 上的读写性能。主要改进包括:采用 Arrow 接口减少数据转换开销,内置 Paimon SDK 提升启动速度,实现原生读写能力,减少中间拷贝与转换,显著降低 CPU 开销与延迟。经过双十一实战验证,Paimon 表的读写速度已接近 MaxCompute 内表,远超传统外表。欢迎体验!
|
2月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
477 7
|
2月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
61 2
|
4天前
|
分布式计算 Shell MaxCompute
odps测试表及大量数据构建测试
odps测试表及大量数据构建测试