7.4.4 【MySQL】索引字符串值的前缀

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 7.4.4 【MySQL】索引字符串值的前缀

我们知道一个字符串其实是由若干个字符组成,如果我们在 MySQL 中使用 utf8 字符集去存储字符串的话,编码一个字符需要占用 1~3 个字节。假设我们的字符串很长,那存储一个字符串就需要占用很大的存储空间。在我们需要为这个字符串列建立索引时,那就意味着在对应的 B+ 树中有这么两个问题:


B+ 树索引中的记录需要把该列的完整字符串存储起来,而且字符串越长,在索引中占用的存储空间越大。

如果 B+ 树索引中索引列存储的字符串很长,那在做字符串比较时会占用更多的时间。

我们前边儿说过索引列的字符串前缀其实也是排好序的,所以索引的设计者提出了个方案 --- 只对字符串的前几个字符进行索引也就是说在二级索引的记录中只保留字符串前几个字符。这样在查找记录时虽然不能精确的定位到记录的位置,但是能定位到相应前缀所在的位置,然后根据前缀相同的记录的主键值回表查询完整的字符串值,再对比就好了。这样只在 B+ 树中存储字符串的前几个字符的编码,既节约空间,又减少了字符串的比较时间,还大概能解决排序的问题,何乐而不为,比方说我们在建表语句中只对 name 列的前10个字符进行索引可以这么写:

CREATE TABLE person_info( 
name VARCHAR(100) NOT NULL, 
birthday DATE NOT NULL,
 phone_number CHAR(11) NOT NULL, 
 country varchar(100) NOT NULL, 
 KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)); 

name(10) 就表示在建立的 B+ 树索引中只保留记录的前 10 个字符的编码,这种只索引字符串值的前缀的策略是我们非常鼓励的,尤其是在字符串类型能存储的字符比较多的时候。

7.4.4.1 索引列前缀对排序的影响

如果使用了索引列前缀,比方说前边只把 name 列的前10个字符放到了二级索引中,下边这个查询可能就有点儿尴尬了:

SELECT * FROM person_info ORDER BY name LIMIT 10;

因为二级索引中不包含完整的 name 列信息,所以无法对前十个字符相同,后边的字符不同的记录进行排序,也就是使用索引列前缀的方式无法支持使用索引排序,只好乖乖的用文件排序。

7.4.5 让索引列在比较表达式中单独出现

假设表中有一个整数列 my_col ,我们为这个列建立了索引。下边的两个 WHERE 子句虽然语义是一致的,但是在效率上却有差别:


1. WHERE my_col *

2 < 42. WHERE my_col < 4/2


第1个 WHERE 子句中 my_col 列并不是以单独列的形式出现的,而是以 my_col * 2 这样的表达式的形式出现的,存储引擎会依次遍历所有的记录,计算这个表达式的值是不是小于 4 ,所以这种情况下是使用不到为 my_col 列建立的 B+ 树索引的。而第2个 WHERE 子句中 my_col 列并是以单独列的形式出现的,这样的情况可以直接使用B+ 树索引。


所以结论就是:如果索引列在比较表达式中不是以单独列的形式出现,而是以某个表达式,或者函数调用形式出现的话,是用不到索引的。

7.4.6 主键插入顺序

我们知道,对于一个使用 InnoDB 存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在 聚簇索引 的叶子节点的。而记录又是存储在数据页中的,数据页和记录又是按照记录主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是依次增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽大忽小的话,这就比较麻烦了,假设某个数据页存储的记录已经满了,它存储的主键值在 1~100 之间:

如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:

可这个数据页已经满了啊,再插进来咋办呢?我们需要把当前页面分裂成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着:性能损耗!所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的主键值依次递增,这样就不会发生这样的性能损耗了。所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 ,比方说我们可以这样定义person_info 表:

CREATE TABLE person_info( 
id INT UNSIGNED NOT NULL AUTO_INCREMENT, 
name VARCHAR(100) NOT NULL, 
birthday DATE NOT NULL, 
phone_number CHAR(11) NOT NULL, 
country varchar(100) NOT NULL, 
PRIMARY KEY (id), 
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)); 

我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。

7.4.7 冗余和重复索引

有时候有的同学有意或者无意的就对同一个列创建了多个索引,比方说这样写建表语句:

CREATE TABLE person_info( 
id INT UNSIGNED NOT NULL AUTO_INCREMENT, 
name VARCHAR(100) NOT NULL, 
birthday DATE NOT NULL, 
phone_number CHAR(11) NOT NULL, 
country varchar(100) NOT NULL, 
PRIMARY KEY (id), 
KEY idx_name_birthday_phone_number (name(10), birthday, phone_number), 
KEY idx_name (name(10))); 

我们知道,通过 idx_name_birthday_phone_number 索引就可以对 name 列进行快速搜索,再创建一个专门针对name 列的索引就算是一个 冗余 索引,维护这个索引只会增加维护的成本,并不会对搜索有什么好处。


另一种情况,我们可能会对某个列重复建立索引,比方说这样:

CREATE TABLE repeat_index_demo ( 
c1 INT PRIMARY KEY, 
c2 INT, 
UNIQUE uidx_c1 (c1), 
INDEX idx_c1 (c1)); 

我们看到, c1 既是主键、又给它定义为一个唯一索引,还给它定义了一个普通索引,可是主键本身就会生成聚簇索引,所以定义的唯一索引和普通索引是重复的,这种情况要避免。

7.5 总结

B+ 树索引在空间和时间上都有代价,所以没事儿别瞎建索引。

B+ 树索引适用于下边这些情况:

全值匹配

匹配左边的列

匹配范围值

精确匹配某一列并范围匹配另外一列

用于排序

用于分组

在使用索引时需要注意下边这些事项:

只为用于搜索、排序或分组的列创建索引

为列的基数大的列创建索引

索引列的类型尽量小

可以只对字符串值的前缀建立索引

只有索引列在比较表达式中单独出现才可以适用索引

为了尽可能少的让 聚簇索引 发生页面分裂和记录移位的情况,建议让主键拥有 AUTO_INCREMENT 属性。

定位并删除表中的重复和冗余索引

尽量使用 覆盖索引 进行查询,避免 回表 带来的性能损耗。


相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
1月前
|
缓存 关系型数据库 MySQL
MySQL索引策略与查询性能调优实战
在实际应用中,需要根据具体的业务需求和查询模式,综合运用索引策略和查询性能调优方法,不断地测试和优化,以提高MySQL数据库的查询性能。
172 66
|
8天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
61 9
|
12天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
52 18
|
5天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
31 8
|
11天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
18 7
|
10天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
40 5
|
14天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
74 7
|
1月前
|
关系型数据库 MySQL Java
MySQL索引优化与Java应用实践
【11月更文挑战第25天】在大数据量和高并发的业务场景下,MySQL数据库的索引优化是提升查询性能的关键。本文将深入探讨MySQL索引的多种类型、优化策略及其在Java应用中的实践,通过历史背景、业务场景、底层原理的介绍,并结合Java示例代码,帮助Java架构师更好地理解并应用这些技术。
31 2
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
277 1
|
1月前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第26天】数据库作为现代应用系统的核心组件,其性能优化至关重要。本文主要探讨MySQL的索引策略与查询性能调优。通过合理创建索引(如B-Tree、复合索引)和优化查询语句(如使用EXPLAIN、优化分页查询),可以显著提升数据库的响应速度和稳定性。实践中还需定期审查慢查询日志,持续优化性能。
124 0

推荐镜像

更多