【50个Pandas高级操作】(上)

简介: 【50个Pandas高级操作】

在数据分析和数据建模的过程中需要对数据进行清洗和整理等工作,有时需要对数据增删字段。下面为大家介绍Pandas对数据的复杂查询、数据类型转换、数据排序、数据的修改、数据迭代以及函数的使用

01、复杂查询

实际业务需求往往需要按照一定的条件甚至复杂的组合条件来查询数据,接下来为大家介绍如何发挥Pandas数据筛选的无限可能,随心所欲地取用数据。

1、逻辑运算

# Q1成绩大于36
df.Q1> 36
# Q1成绩不小于60分,并且是C组成员
~(df.Q1< 60) & (df['team'] == 'C')

2、逻辑筛选数据

切片([ ])、.loc[ ]和.iloc[ ]均支持上文所介绍的逻辑表达式。

以下是切片([ ])的逻辑筛选示例:

df[df['Q1']== 8] # Q1等于8
df[~(df['Q1']== 8)] # 不等于8
df[df.name== 'Ben'] # 姓名为Ben
df[df.Q1> df.Q2]

以下是.loc[ ]和.lic[ ]示例:

# 表达式与切片一致
df.loc[df['Q1']> 90, 'Q1':] # Q1大于90,只显示Q1
df.loc[(df.Q1> 80) & (df.Q2 < 15)] # and关系
df.loc[(df.Q1> 90) | (df.Q2 < 90)] # or关系
df.loc[df['Q1']== 8] # 等于8
df.loc[df.Q1== 8] # 等于8
df.loc[df['Q1']> 90, 'Q1':] # Q1大于90,显示Q1及其后所有列

3、函数筛选

# 查询最大索引的值
df.Q1[lambdas: max(s.index)] # 值为21
# 计算最大值
max(df.Q1.index)
# 99
df.Q1[df.index==99]

4、比较函数

# 以下相当于 df[df.Q1 == 60]
df[df.Q1.eq(60)]
df.ne() # 不等于 !=
df.le() # 小于等于 <=
df.lt() # 小于 <
df.ge() # 大于等于 >=
df.gt() # 大于 >

5、查询df.query()

df.query('Q1 > Q2 > 90') # 直接写类型SQL where语句

还支持使用@符引入变量

# 支持传入变量,如大于平均分40分的
a = df.Q1.mean()
df.query('Q1 > @a+40')
df.query('Q1 > `Q2`+@a')

df.eval()与df.query()类似,也可以用于表达式筛选。

# df.eval()用法与df.query类似
df[df.eval("Q1 > 90 > Q3 >10")]
df[df.eval("Q1 > `Q2`+@a")]

6、筛选df.filter()

df.filter(items=['Q1', 'Q2']) # 选择两列
df.filter(regex='Q', axis=1) # 列名包含Q的列
df.filter(regex='e$', axis=1) # 以e结尾的列
df.filter(regex='1$', axis=0) # 正则,索引名以1结尾
df.filter(like='2', axis=0) # 索引中有2的
# 索引中以2开头、列名有Q的
df.filter(regex='^2',axis=0).filter(like='Q', axis=1)

7、按数据类型查询

df.select_dtypes(include=['float64']) # 选择float64型数据
df.select_dtypes(include='bool')
df.select_dtypes(include=['number']) # 只取数字型
df.select_dtypes(exclude=['int']) # 排除int类型
df.select_dtypes(exclude=['datetime64'])

02、数据类型转换

在开始数据分析前,我们需要为数据分配好合适的类型,这样才能够高效地处理数据。不同的数据类型适用于不同的处理方法。

# 对所有字段指定统一类型
df = pd.DataFrame(data, dtype='float32')
# 对每个字段分别指定
df = pd.read_excel(data, dtype={'team':'string', 'Q1': 'int32'})

1、推断类型

# 自动转换合适的数据类型
df.infer_objects() # 推断后的DataFrame
df.infer_objects().dtypes

2、指定类型

# 按大体类型推定
m = ['1', 2, 3]
s = pd.to_numeric(s) # 转成数字
pd.to_datetime(m) # 转成时间
pd.to_timedelta(m) # 转成时间差
pd.to_datetime(m, errors='coerce') # 错误处理
pd.to_numeric(m, errors='ignore')
pd.to_numeric(m errors='coerce').fillna(0) # 兜底填充
pd.to_datetime(df[['year', 'month', 'day']])
# 组合成日期

3、类型转换astype()

df.Q1.astype('int32').dtypes
# dtype('int32')
df.astype({'Q1': 'int32','Q2':'int32'}).dtypes

4、转为时间类型

t = pd.Series(['20200801', '20200802'])

03、数据排序

数据排序是指按一定的顺序将数据重新排列,帮助使用者发现数据的变化趋势,同时提供一定的业务线索,还具有对数据纠错、分类等作用。

1、索引排序df.sort_index()

s.sort_index() # 升序排列
df.sort_index() # df也是按索引进行排序
df.team.sort_index()s.sort_index(ascending=False)# 降序排列
s.sort_index(inplace=True) # 排序后生效,改变原数据
# 索引重新0-(n-1)排,很有用,可以得到它的排序号
s.sort_index(ignore_index=True)
s.sort_index(na_position='first') # 空值在前,另'last'表示空值在后
s.sort_index(level=1) # 如果多层,排一级
s.sort_index(level=1, sort_remaining=False) #这层不排
# 行索引排序,表头排序
df.sort_index(axis=1) # 会把列按列名顺序排列

2、数值排序sort_values()

df.Q1.sort_values()
df.sort_values('Q4')
df.sort_values(by=['team', 'name'],ascending=[True, False])

其他方法:

s.sort_values(ascending=False) # 降序
s.sort_values(inplace=True) # 修改生效
s.sort_values(na_position='first') # 空值在前
# df按指定字段排列
df.sort_values(by=['team'])
df.sort_values('Q1')
# 按多个字段,先排team,在同team内再看Q1
df.sort_values(by=['team', 'Q1'])
# 全降序
df.sort_values(by=['team', 'Q1'], ascending=False)
# 对应指定team升Q1降
df.sort_values(by=['team', 'Q1'],ascending=[True, False])
# 索引重新0-(n-1)排
df.sort_values('team', ignore_index=True)

3、混合排序

df.set_index('name', inplace=True) # 设置name为索引
df.index.names = ['s_name'] # 给索引起名
df.sort_values(by=['s_name', 'team']) # 排序

4、按值大小排序nsmallest()和nlargest()

s.nsmallest(3) # 最小的3个
s.nlargest(3) # 最大的3个
# 指定列
df.nlargest(3, 'Q1')
df.nlargest(5, ['Q1', 'Q2'])
df.nsmallest(5, ['Q1', 'Q2'])


相关文章
|
8月前
|
Python
如何使用Python的Pandas库进行数据透视图(melt/cast)操作?
Pandas的`melt()`和`pivot()`函数用于数据透视。基本步骤:导入pandas,创建DataFrame,然后使用这两个函数变换数据。示例代码:导入pandas,定义一个包含&#39;Name&#39;和&#39;Age&#39;列的DataFrame,使用`melt()`转为长格式,再用`pivot()`恢复为宽格式。
159 1
|
8月前
|
数据可视化 数据挖掘 数据处理
进阶 pandas DataFrame:挖掘高级数据处理技巧
【5月更文挑战第19天】本文介绍了Pandas DataFrame的高级使用技巧,包括数据重塑(如`pivot`和`melt`)、字符串处理(如提取和替换)、日期时间处理(如解析和时间序列操作)、合并与连接(如`merge`和`concat`),以及使用`apply()`应用自定义函数。这些技巧能提升数据处理效率,适用于复杂数据分析任务。推荐进一步学习和探索Pandas的高级功能。
|
8月前
|
数据挖掘 数据处理 Python
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
【5月更文挑战第19天】在 Python 数据分析中,pandas DataFrame 是核心工具。本文介绍了几个高级技巧:1) 横向合并 DataFrame;2) 数据分组与聚合;3) 处理缺失值;4) 数据重塑;5) 条件筛选;6) 使用函数处理数据。掌握这些技巧能提升数据处理效率和分析深度,助你更好地发掘数据价值。
78 1
【Python DataFrame 专栏】深入探索 pandas DataFrame:高级数据处理技巧
|
7月前
|
数据采集 存储 数据可视化
Pandas高级教程:数据清洗、转换与分析
Pandas是Python的数据分析库,提供Series和DataFrame数据结构及数据分析工具,便于数据清洗、转换和分析。本教程涵盖Pandas在数据清洗(如缺失值、重复值和异常值处理)、转换(数据类型转换和重塑)和分析(如描述性统计、分组聚合和可视化)的应用。通过学习Pandas,用户能更高效地处理和理解数据,为数据分析任务打下基础。
871 3
|
6月前
|
数据采集 数据挖掘 数据处理
Python数据分析加速器:深度挖掘Pandas与NumPy的高级功能
【7月更文挑战第14天】Python的Pandas和NumPy库是数据分析的核心工具。Pandas以其高效的数据处理能力,如分组操作和自定义函数应用,简化了数据清洗和转换。NumPy则以其多维数组和广播机制实现快速数值计算。两者协同工作,如在DataFrame与NumPy数组间转换进行预处理,提升了数据分析的效率和精度。掌握这两者的高级功能是提升数据科学技能的关键。**
64 0
|
6月前
|
数据采集 机器学习/深度学习 数据处理
数据科学家的秘密武器:Pandas与NumPy高级应用实战指南
【7月更文挑战第14天】Pandas与NumPy在数据科学中扮演关键角色。Pandas的DataFrame和Series提供高效数据处理,如数据清洗、转换,而NumPy则以ndarray为基础进行数值计算和矩阵操作。两者结合,从数据预处理到数值分析,形成强大工具组合。示例展示了填充缺失值、类型转换、矩阵乘法、标准化等操作,体现其在实际项目中的协同效用。掌握这两者,能提升数据科学家的效能和分析深度。**
56 0
|
6月前
|
数据处理 Python
数据科学进阶之路:Pandas与NumPy高级操作详解与实战演练
【7月更文挑战第13天】探索数据科学:Pandas与NumPy提升效率的高级技巧** - Pandas的`query`, `loc`和`groupby`用于复杂筛选和分组聚合,例如筛选2023年销售额超1000的记录并按类别计总销售额。 - NumPy的广播和向量化运算加速大规模数据处理,如快速计算两个大数组的元素级乘积。 - Pandas DataFrame基于NumPy,二者协同加速数据处理,如将DataFrame列转换为NumPy数组进行标准化再回写,避免链式赋值。 掌握这些高级操作,实现数据科学项目的效率飞跃。
72 0
|
6月前
|
数据挖掘 数据处理 决策智能
Python 数据分析工具箱:深挖 Pandas 与 NumPy 高级功能,驱动智能决策
【7月更文挑战第12天】Python的Pandas和NumPy是数据分析的基石。Pandas提供灵活的数据结构如DataFrame,用于高效处理关系型数据,而NumPy则以多维数组和科学计算功能著称。两者结合,支持数据合并(如`pd.merge`)、时间序列分析(`pd.to_datetime`)和高级数组运算。通过掌握它们的高级特性,能提升数据分析效率,应用于各领域,如金融风险评估、市场分析和医疗预测,助力数据驱动的决策。学习和熟练运用Pandas与NumPy是成为出色数据分析师的关键。
67 0
|
8月前
|
索引 Python
使用Python的Pandas库进行数据透视表(pivot table)操作
使用Python Pandas进行数据透视表操作包括:安装Pandas库,导入库,创建或读取数据,如`pd.DataFrame()`或从文件读取;然后使用`pd.pivot_table()`创建透视表,指定数据框、行索引、列索引和值,例如按姓名和科目分组计算平均分;查看结果通过打印数据透视表;最后可使用`to_csv()`等方法保存到文件。这为基础步骤,可按需求调整参数实现更多功能。
362 2
|
8月前
|
索引 Python
如何使用Python的Pandas库进行数据透视表(pivot table)操作?
使用Pandas在Python中创建数据透视表的步骤包括:安装Pandas库,导入它,创建或读取数据(如DataFrame),使用`pd.pivot_table()`指定数据框、行索引、列索引和值,计算聚合函数(如平均分),并可打印或保存结果到文件。这允许对数据进行高效汇总和分析。
107 2
下一篇
开通oss服务