【机器学习5】数据处理(二)Pandas:表格处理 2

简介: 【机器学习5】数据处理(二)Pandas:表格处理

🌕🌕单条件过滤

df[df.z>=5]

🌕🌕多条件过滤

df[(df.z>=4)&(df.z<=5)]

🌙🌙获取列名和行名

df.columns #获取列名
df.index  #获取行名

🌙🌙观察DataFrame的内容

df.info() #打印属性信息
df.head()# 查看前五行的数据
df.tail()#查看后五行的数据

✨✨变量的变换

有时候,我们需要对DataFrame某列的每个元素都进行运算处理,从而产生并添加新的列

我么可以直接对DataFrame的列进行加减乘除某个数,产生新的列:

df['z1']=df['z']*2

f107b3b2d3474b689745c049db386c61.png

apply、applymap和map方法都可以向对象中的数据传递函数,主要区别如下:
🌙apply的操作对象是DataFrame的某一列(axis=1)或者某一行(axis=0)

🌙applymap的操作对象是元素极,作用于每个DataFrame的每个数据
🌙map的操作对象也是元素极,但其是对Series的每个数据调用一次函数

使用apply方法,结合lambda表达式,可以为原数据框添加新的列:

df['z2']=df.apply(lambda x:x['z']*2 if x['z']==4 else x['z'],axis=1)

✨✨表格的拼接

有时候,我们需要在已有数据框的基础上添加新的行或者列,或者横向或纵向的表格。此时我们需要使用pd.concat函数或者append函数实现该功能。

✨✨ 表格的分组操作

DataFrame往往存在某列包含多个类别的数据,例如上次博客中的经典的葡萄酒数据集。我们以此为例。

import pandas as pd
file_path="D:\A_data\Data_wine数据\wine.xlsx"
df=pd.read_excel(file_path)
df

使用 groupby()函数进行分组操作:

df1=df.groupby('label')
df

分组之后的结果与原来数据一样,这是因为在类别标签‘label’这一列,原来的数据就是按照0、1、2三种类别的顺序排下来的。

🌙🌙按照分组求均值、求和

求均值:

df2=df.groupby('label').mean()
df2

当然了,也可以只打出我们想要的某一列的均值:

df2=df.groupby('label').ash.mean()
df2

求和:

对于这个葡萄酒数据集可能求和操作并没有意义,但在此只是练习:

df2=df.groupby('label').sum()
df2

求方差:

df2=df.groupby('label').std()
df2

✨✨表格的拼接

有时候,我们需要在已有数据框的基础上添加新的行或者列,或者横向或纵向的表格。此时我们需要使用pd.concat函数或者append函数实现该功能。

其中,axis=0表示沿纵轴连接。axis=1表示沿横轴连接。

下面我们再举一个例子:

(我觉得2020年国赛数学建模国赛C题很不错)

首先,我们可以看一下,这是一个多sheet Excel:

而且,sheet2 、sheet3企业代号就是sheet1中企业的所有发票信息,也就是说一个企业就有很多发票号码。
我们需要整合sheet2,以及sheet3中的信息,将一个企业的某一个指标进行计算,然后希望补到heet1中,形成一个更宏观的表格。

分析指标:总进项价税额:是指企业在一段时间内购进产品的价值总和,该值越高说明企业的生产和经营规模就越大,可以作为衡量企业生产规模大小的有效指标。

我希望根据sheet2算出这个指标,然后添加到sheet1中。

首先导入数据。

import pandas as pd
file_path="D:\A_data\Data.2020.C\附件1:123家有信贷记录企业的相关数据.xlsx"
df=pd.read_excel(file_path,sheet_name=None)
df

这里设置sheet_name=None,会将所有的sheet都整合在df中。

将sheet1保存至df1

df1=pd.read_excel(file_path,sheet_name='企业信息')
df1

将我们所要研究的sheet2即“进项发票信息”保存给df2

df2=pd.read_excel(file_path,sheet_name='进项发票信息')
df2

根据sheet2计算总进项价税额:

df2_=df2.groupby(['企业代号'],as_index=False,sort=False)['价税合计'].sum()
df2_

这里注意,设置参数sort=False,不然会改变企业代号的排序。

删除企业代号这一列:

df2_.drop(labels='企业代号',axis=1,inplace=False)

参数说明:axis默认为0,指删除行,axis=1,指删除列。

inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新DataFrame。inplace=True,则会直接在原数据上进行删除操作,且删除后无法返回。

😭😭😭😭**由于我拼接表格,添加新的一列,没有成功。弄出来是这个样子的:**😱😱😱

所以下面我是导出数据,形成一个新的excel,然后利用excel复制粘贴到sheet1中。

df2__.to_excel("D:\A_data\Data.2020.C\进项价税合计.xlsx")

还要继续努力呀😭😭😭😭加油加油!


相关文章
|
2月前
|
Java 数据处理 索引
(Pandas)Python做数据处理必选框架之一!(二):附带案例分析;刨析DataFrame结构和其属性;学会访问具体元素;判断元素是否存在;元素求和、求标准值、方差、去重、删除、排序...
DataFrame结构 每一列都属于Series类型,不同列之间数据类型可以不一样,但同一列的值类型必须一致。 DataFrame拥有一个总的 idx记录列,该列记录了每一行的索引 在DataFrame中,若列之间的元素个数不匹配,且使用Series填充时,在DataFrame里空值会显示为NaN;当列之间元素个数不匹配,并且不使用Series填充,会报错。在指定了index 属性显示情况下,会按照index的位置进行排序,默认是 [0,1,2,3,...] 从0索引开始正序排序行。
257 0
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
410 0
|
4月前
|
存储 数据采集 数据处理
Pandas与NumPy:Python数据处理的双剑合璧
Pandas与NumPy是Python数据科学的核心工具。NumPy以高效的多维数组支持数值计算,适用于大规模矩阵运算;Pandas则提供灵活的DataFrame结构,擅长处理表格型数据与缺失值。二者在性能与功能上各具优势,协同构建现代数据分析的技术基石。
368 0
|
6月前
|
运维 数据挖掘 数据处理
Pandas时间数据处理:从基础到进阶的实战指南
Pandas时间数据处理涵盖了从基础到高级的全面功能。其核心由Timestamp、DatetimeIndex、Period和Timedelta四个类构建,支持精准的时间点与区间操作。内容包括时间数据生成(字符串解析与序列生成)、时间索引与切片、高级运算(偏移重采样与窗口计算)、时区处理、周期性数据分析及实战案例(如智能电表数据)。此外,还涉及性能优化技巧和未来展望,帮助用户高效处理时间序列数据并应用于预测分析等场景。
278 1
|
6月前
|
传感器 安全 数据处理
Pandas时间数据处理:从基础到进阶的实战指南
本文深入讲解Pandas时间数据处理技巧,从时间对象转换到高性能计算全面覆盖。通过真实案例拆解,掌握Timestamp与Period的核心概念、时间序列生成、重采样方法及窗口函数应用。同时剖析时区处理、性能优化策略及常见陷阱解决方案,并展望Pandas 2.0的时间处理新特性。内容强调“时间索引优先”原则,助你高效分析股票K线、用户行为等时间序列数据。
177 0
|
10月前
|
缓存 数据可视化 BI
Pandas高级数据处理:数据仪表板制作
在数据分析中,面对庞大、多维度的数据集(如销售记录、用户行为日志),直接查看原始数据难以快速抓住重点。传统展示方式(如Excel表格)缺乏交互性和动态性,影响决策效率。为此,我们利用Python的Pandas库构建数据仪表板,具备数据聚合筛选、可视化图表生成和性能优化功能,帮助业务人员直观分析不同品类商品销量分布、省份销售额排名及日均订单量变化趋势,提升数据洞察力与决策效率。
223 12
|
10月前
|
数据可视化 数据挖掘 数据处理
Pandas高级数据处理:数据可视化进阶
Pandas是数据分析的强大工具,能高效处理数据并与Matplotlib、Seaborn等库集成,实现数据可视化。本文介绍Pandas在绘制基础图表(如折线图)和进阶图表(如分组柱状图、热力图)时的常见问题及解决方案,涵盖数据准备、报错处理、图表优化等内容,并通过代码案例详细解释,帮助读者掌握数据可视化的技巧。
222 13
|
10月前
|
数据采集 SQL 数据可视化
Pandas高级数据处理:交互式数据探索
Pandas是Python中流行的数据分析库,提供丰富的数据结构和函数,简化数据操作。本文从基础到高级介绍Pandas的使用,涵盖安装、读取CSV/Excel文件、数据查看与清洗、类型转换、条件筛选、分组聚合及可视化等内容。掌握这些技能,能高效进行交互式数据探索和预处理。
133 6
|
10月前
|
数据采集 存储 数据可视化
Pandas高级数据处理:数据报告生成
Pandas 是数据分析领域不可或缺的工具,支持多种文件格式的数据读取与写入、数据清洗、筛选与过滤。本文从基础到高级,介绍如何使用 Pandas 进行数据处理,并解决常见问题和报错,如数据类型不一致、时间格式解析错误、内存不足等。最后,通过数据汇总、可视化和报告导出,生成专业的数据报告,帮助你在实际工作中更加高效地处理数据。
287 8
|
10月前
|
存储 数据挖掘 数据处理
Pandas高级数据处理:数据安全与隐私保护
在数字化时代,数据安全与隐私保护至关重要。本文介绍使用Pandas进行数据分析时常见的安全问题及解决方案,包括数据泄露风险、权限报错、数据类型转换错误等,并结合代码案例详细讲解如何避免和解决这些问题。同时,探讨高级策略如访问控制、匿名化、差分隐私及加密传输存储,确保数据分析合法合规。
282 7

热门文章

最新文章