4.2 Rocketbot-拓扑图
【拓扑图】展示当前整个业务服务的拓扑图。点击拓扑图中的任意节点,可以看到服务相应的状态信息,其中包括响应的平均耗时、SLA 等监控信息。点击拓扑图中任意一条边,还可以看到一条调用链路的监控信息,其中会分别从客户端(上游调用方)和服务端(下游接收方)来观测这条调用链路的状态,其中展示了该条链路的耗时、吞吐量、SLA 等信息。
4.3 追踪
【追踪】主要用来查询 Trace 信息,如下图所示。在①处可以选择 Trace 的查询条件,其中可以指定 Trace 涉及到的 Service、ServiceInstance、Endpoint 以及Trace 的状态继续模糊查询,还可以指定 TraceId 和时间范围进行精确查询。在②处可以直接根据请求连接查找调用链路信息。在③处展示了 Trace 的简略信息。在④处可以选择不同的方式展示追踪信息。在这里,我们不仅能看到调用链路信息,还能看到MySQL操作监控,如下图:
错误异常信息也能追踪,如下图:
4.4 性能分析
在传统的监控系统中,我们如果想要得知系统中的业务是否正常,会采用进程监控、日志收集分析等方式来对系统进行监控。当机器或者服务出现问题时,则会触发告警及时通知负责人。通过这种方式,我们可以得知具体哪些服务出现了问题。但是这时我们并不能得知具体的错误原因出在了哪里,开发人员或者运维人员需要到日志系统里面查看错误日志,甚至需要到真实的业务服务器上查看执行情况来解决问题。
如此一来,仅仅是发现问题的阶段,可能就会耗费相当长的时间;另外,发现问题但是并不能追溯到问题产生具体原因的情况,也常有发生。这样反反复复极其耗费时间和精力,为此我们便有了基于分布式追踪的APM系统。
通过将业务系统接入分布式追踪中,我们就像是给程序增加了一个放大镜功能,可以清晰看到真实业务请求的整体链路,包括请求时间、请求路径,甚至是操作数据库的语句都可以看得一清二楚。通过这种方式,我们结合告警便可以快速追踪到真实用户请求的完整链路信息,并且这些数据信息完全是持久化的,可以随时进行查询,复盘错误的原因。
然而随着我们对服务监控理解的加深,我们发现事情并没有那么简单。在分布式链路追踪中我们有这样的两个流派:代码埋点和字节码增强。无论使用哪种方式,底层逻辑一定都逃不过面向切面这个基础逻辑。因为只有这样才可以做到大面积的使用。这也就决定了它只能做到框架级别和RPC粒度的监控。这时我们可能依旧会遇到程序执行缓慢或者响应时间不稳定等情况,但无法具体查询到原因。这时候,大家很自然的会考虑到增加埋点粒度,比如对所有的Spring Bean方法、甚至主要的业务层方法都加上埋点。但是这种思路会遇到不小的挑战:
第一,增加埋点时系统开销大,埋点覆盖不够全面。通过这种方式我们确实可以做到具体业务场景具体分析。但随着业务不断迭代上线,弊端也很明显:大量的埋点无疑会加大系统资源的开销,造成CPU、内存使用率增加,更有可能拖慢整个链路的执行效率。虽然每个埋点消耗的性能很小,在微秒级别,但是因为数量的增加,甚至因为业务代码重用造成重复埋点或者循环使用,此时的性能开销已经无法忽略。
第二,动态埋点作为一项埋点技术,和手动埋点的性能消耗上十分类似,只是减少的代码修改量,但是因为通用技术的特别,上一个挑战中提到的循环埋点和重复使用的场景甚至更为严重。比如选择所有方法或者特定包下的所有方法埋点,很可能造成系统性能彻底崩溃。
第三,即使我们通过合理设计和埋点,解决了上述问题,但是JDK函数是广泛使用的,我们很难限制对JDK API的使用场景。对JDK过多方法、特别是非RPC方法的监控会造成系统的巨大延迟风险。而且有一些基础类型和底层工具类,是很难通过字节码进行增强的。当我们的SDK使用不当或者出现bug时,我们无法具体得知真实的错误原因。Skywalking中可以使用性能剖析分析特定端点的性能,我们需要先创建一个监控任务:
新建任务后,在右侧可以查看任务性能分析报表,还可以点击分析线程栈信息,如下图:
4.5 告警
SkyWalking 告警功能是在6.x版本新增的,其核心由一组规则驱动,这些规则定义在config/alarm-settings.yml
文件中。 告警的定义分为两部分:
- 告警规则:它们定义了应该如何触发度量警报,应该考虑什么条件。
- Webhook(网络钩子):定义当警告触发时,哪些服务终端需要被告知
4.5.1 警告规则详解
Skywalking每隔一段时间根据收集到的链路追踪的数据和配置的告警规则(如服务响应时间、服务响应时间百分比)等,判断如果达到阈值则发送相应的告警信息。发送告警信息是通过调用webhook接口完成,具体的webhook接口可以使用者自行定义,从而开发者可以在指定的webhook接口中编写各种告警方式,比如邮件、短信等。告警的信息也可以在RocketBot中查看到。
我们可以进入到Skywalking容器中,再进入到config文件夹下就可以看到alarm-settings.yml,如下图:
SkyWalking 的发行版都会默认提供config/alarm-settings.yml
文件,里面预先定义了一些常用的告警规则。如下:
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Sample alarm rules. rules: # Rule unique name, must be ended with `_rule`. service_resp_time_rule: metrics-name: service_resp_time op: ">" threshold: 1000 period: 10 count: 3 silence-period: 5 message: Response time of service {name} is more than 1000ms in 3 minutes of last 10 minutes. service_sla_rule: # Metrics value need to be long, double or int metrics-name: service_sla op: "<" threshold: 8000 # The length of time to evaluate the metrics period: 10 # How many times after the metrics match the condition, will trigger alarm count: 2 # How many times of checks, the alarm keeps silence after alarm triggered, default as same as period. silence-period: 3 message: Successful rate of service {name} is lower than 80% in 2 minutes of last 10 minutes service_resp_time_percentile_rule: # Metrics value need to be long, double or int metrics-name: service_percentile op: ">" threshold: 1000,1000,1000,1000,1000 period: 10 count: 3 silence-period: 5 message: Percentile response time of service {name} alarm in 3 minutes of last 10 minutes, due to more than one condition of p50 > 1000, p75 > 1000, p90 > 1000, p95 > 1000, p99 > 1000 service_instance_resp_time_rule: metrics-name: service_instance_resp_time op: ">" threshold: 1000 period: 10 count: 2 silence-period: 5 message: Response time of service instance {name} is more than 1000ms in 2 minutes of last 10 minutes # Active endpoint related metrics alarm will cost more memory than service and service instance metrics alarm. # Because the number of endpoint is much more than service and instance. # # endpoint_avg_rule: # metrics-name: endpoint_avg # op: ">" # threshold: 1000 # period: 10 # count: 2 # silence-period: 5 # message: Response time of endpoint {name} is more than 1000ms in 2 minutes of last 10 minutes webhooks: # - http://127.0.0.1/notify/ # - http://127.0.0.1/go-wechat/
告警规则配置项的说明:
**Rule name:**规则名称,也是在告警信息中显示的唯一名称。必须以_rule结尾,前缀可自定义
**Metrics name:**度量名称,取值为oal脚本中的度量名,目前只支持long、double和int类型。
**Include names:**该规则作用于哪些实体名称,比如服务名,终端名(可选,默认为全部)
**Exclude names:**该规则作不用于哪些实体名称,比如服务名,终端名(可选,默认为空)
**Threshold:**阈值
OP: 操作符,目前支持 >、<、=
**Period:**多久告警规则需要被核实一下。这是一个时间窗口,与后端部署环境时间相匹配
**Count:**在一个Period窗口中,如果values超过Threshold值(按op),达到Count值,需要发送警报
**Silence period:**在时间N中触发报警后,在TN -> TN + period这个阶段不告警。 默认情况下,它和Period一样,这意味着相同的告警(在同一个Metrics name拥有相同的Id)在同一个Period内只会触发一次
**message:**告警消息
在配置文件中预先定义的告警规则总结如下:
在过去10分钟内服务平均响应时间超过1秒达3次
在过去10分钟内服务成功率低于80%达2次
在过去10分钟内服务90%响应时间低于1秒达3次
在过去10分钟内服务的响应时间超过1秒达2次
在过去10分钟内端点的响应时间超过1秒达2次
这些警告信息最终会在Skywalking-UI上展示,效果如下:
4.5.2 Webhook规则
Webhook配置其实是警告消息接收回调处理,我们可以在程序中写一个方法接收警告信息,Skywalking会以application/json格式通过http请求发送,消息格式声明为:List<org.apache.skywalking.oap.server.core.alarm.AlarmMessage。
字段如下:
scopeId, scope: 所有的scope实体在 org.apache.skywalking.oap.server.core.source.DefaultScopeDefine 里面声明。
name. 目标scope实体名称。
id0: scope实体ID,匹配名称。
id1: 不使用。
ruleName: 配置在 alarm-settings.yml 里面的规则名称.
alarmMessage: 告警信息.
startTime:触发告警的时间 示例:
[ { "scopeId": 2, "scope": "SERVICE_INSTANCE", "name": "c00158f28efc45cd813e21b6b8848a3a@192.168.1.104 of hailtaxi-driver", "id0": "aGFpbHpdmVy.1_YzAwMAMTkyLjE2OC4xLjEwNA\u003d\u003d", "id1": "", "ruleName": "service_instance_resp_time_rule", "alarmMessage": "Response time of service instance c00158f28efc45cd813e21b6b8848a3a@192.168.1.104 of hailtaxi-driver is more than 1000ms in 2 minutes of last 10 minutes", "startTime": 1611612258056 } ]
4.5.3 自定义Webhook消息接收
我们按照如下步骤,可以在自己程序中接收警告信息:
1)定义消息接收对象
在hailtaxi-api
中创建com.itheima.skywalking.model.AlarmMessage
,代码如下:
@Data @ToString @AllArgsConstructor @NoArgsConstructor public class AlarmMessage { private int scopeId; private String name; private String id0; private String id1; private String alarmMessage; private long startTime; String ruleName; }
2)接收警告方法创建
在hailtaxi-driver
中创建com.itheima.driver.controller.AlarmMessageController
用于接收警告消息,代码如下:
一般情况下,这种接收告警的api会被放置在比较清闲的后台服务中!!!
@RestController @RequestMapping(value = "/skywalking") public class AlarmMessageController { /*** * 接收警告信息 * @param alarmMessageList */ @PostMapping("/webhook") public void webhook(@RequestBody List<AlarmMessage> alarmMessageList) { for (AlarmMessage alarmMessage : alarmMessageList) { System.out.println("webhook:"+alarmMessage); } } }
3)修改Webhook地址
修改alarm-settings.yml
中的webhook地址:
webhooks: # - http://127.0.0.1/notify/ # - http://127.0.0.1/go-wechat/ - http://192.168.200.10:8001/driver/skywalking/webhook
因为skywalking默认有一个告警规则:10分钟内服务成功率低于80%超过2次
所以为了能演示出告警效果,我们在hailtaxi-driver
项目中的driver/info
接口中添加一个一句话
/**** * 司机信息 */ //@GetMapping(value = "/info/{id}") @RequestMapping(value = "/info/{id}") public Driver info(@PathVariable(value = "id")String id,HttpServletRequest request){ int i = 1/ 0; // 产生异常 Enumeration<String> headerNames = request.getHeaderNames(); while (headerNames.hasMoreElements()){ String name = headerNames.nextElement(); String value = request.getHeader(name); System.out.println(name+":"+value); System.out.println("--------------------------"); } return driverService.findById(id); }
测试时将网关的条件断言给注释一下!!!
此时我们程序中就能接收警告信息了。