原来10张图就可以搞懂分布式链路追踪系统原理

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
应用实时监控服务-可观测链路OpenTelemetry版,每月50GB免费额度
简介: 原来10张图就可以搞懂分布式链路追踪系统原理

分布式系统为什么需要链路追踪?

随着互联网业务快速扩展,软件架构也日益变得复杂,为了适应海量用户高并发请求,系统中越来越多的组件开始走向分布式化,如单体架构拆分为微服务、服务内缓存变为分布式缓存、服务组件通信变为分布式消息,这些组件共同构成了繁杂的分布式网络。

微服务架构(极简版)假如现在有一个系统部署了成千上万个服务,用户通过浏览器在主界面上下单一箱茅台酒,结果系统给用户提示:系统内部错误,相信用户是很崩溃的。

运营人员将问题抛给开发人员定位,开发人员只知道有异常,但是这个异常具体是由哪个微服务引起的就需要逐个服务排查了。

界面出现异常难以排查后台服务开发人员借助日志逐个排查的效率是非常低的,那有没有更好的解决方案了?

答案是引入链路追踪系统。

什么是链路追踪?

分布式链路追踪就是将一次分布式请求还原成调用链路,将一次分布式请求的调用情况集中展示,比如各个服务节点上的耗时、请求具体到达哪台机器上、每个服务节点的请求状态等等。

链路跟踪主要功能:

故障快速定位:可以通过调用链结合业务日志快速定位错误信息。链路性能可视化:各个阶段链路耗时、服务依赖关系可以通过可视化界面展现出来。链路分析:通过分析链路耗时、服务依赖关系可以得到用户的行为路径,汇总分析应用在很多业务场景。链路追踪基本原理

链路追踪系统(可能)最早是由Goggle公开发布的一篇论文

《Dapper, a Large-Scale Distributed Systems Tracing Infrastructure》

被大家广泛熟悉,所以各位技术大牛们如果有黑武器不要藏起来赶紧去发表论文吧。

在这篇著名的论文中主要讲述了Dapper链路追踪系统的基本原理和关键技术点。接下来挑几个重点的技术点详细给大家介绍一下。

Trace

Trace的含义比较直观,就是链路,指一个请求经过所有服务的路径,可以用下面树状的图形表示。

traceId串联请求形成链路图中一条完整的链路是:chrome -> 服务A -> 服务B -> 服务C -> 服务D -> 服务E -> 服务C -> 服务A -> chrome。服务间经过的局部链路构成了一条完整的链路,其中每一条局部链路都用一个全局唯一的traceid来标识。

Span

在上图中可以看出来请求经过了服务A,同时服务A又调用了服务B和服务C,但是先调的服务B还是服务C呢?从图中很难看出来,只有通过查看源码才知道顺序。

为了表达这种父子关系引入了Span的概念。

同一层级parent id相同,span id不同,span id从小到大表示请求的顺序,从下图中可以很明显看出服务A是先调了服务B然后再调用了C。

上下层级代表调用关系,如下图服务C的span id为2,服务D的parent id为2,这就表示服务C和服务D形成了父子关系,很明显是服务C调用了服务D。

Span使请求具有父子关系总结:通过事先在日志中埋点,找出相同traceId的日志,再加上parent id和span id就可以将一条完整的请求调用链串联起来。

Annotations

Dapper中还定义了annotation的概念,用于用户自定义事件,用来辅助定位问题。

通常包含四个注解信息:

cs:Client Start,表示客户端发起请求;

sr:ServerReceived,表示服务端收到请求;

ss:Server Send,表示服务端完成处理,并将结果发送给客户端;

cr:ClientReceived,表示客户端获取到服务端返回信息;

一次请求和响应过程上图中描述了一次请求和响应的过程,四个点也就是对应四个Annotation事件。

如下面的图表示从客户端调用服务端的一次完整过程。如果要计算一次调用的耗时,只需要将客户端接收的时间点减去客户端开始的时间点,也就是图中时间线上的T4 - T1。如果要计算客户端发送网络耗时,也就是图中时间线上的T2 - T1,其他类似可计算。

请求和响应的时间线带内数据与带外数据

链路信息的还原依赖于带内和带外两种数据。

带外数据是各个节点产生的事件,如cs,ss,这些数据可以由节点独立生成,并且需要集中上报到存储端。通过带外数据,可以在存储端分析更多链路的细节。

带内数据如traceid,spanid,parentid,用来标识trace,span,以及span在一个trace中的位置,这些数据需要从链路的起点一直传递到终点。通过带内数据的传递,可以将一个链路的所有过程串起来。

采样

由于每一个请求都会生成一个链路,为了减少性能消耗,避免存储资源的浪费,dapper并不会上报所有的span数据,而是使用采样的方式。举个例子,每秒有1000个请求访问系统,如果设置采样率为1/1000,那么只会上报一个请求到存储端。

数据采样通过采集端自适应地调整采样率,控制span上报的数量,可以在发现性能瓶颈的同时,有效减少性能损耗。

存储

存储多样化链路中的span数据经过收集和上报后会集中存储在一个地方,Dapper使用了BigTable数据仓库,常用的存储还有ElasticSearch, HBase, In-memory DB等。

业界常用链路追踪系统

Google Dapper论文发出来之后,很多公司基于链路追踪的基本原理给出了各自的解决方案,如Twitter的Zipkin,Uber的Jaeger,pinpoint,Apache开源的skywalking,还有国产如阿里的鹰眼,美团的Mtrace,滴滴Trace,新浪的Watchman,京东的Hydra,不过国内的这些基本都没有开源。

为了便于各系统间能彼此兼容互通,OpenTracing组织制定了一系列标准,旨在让各系统提供统一的接口。

下面对比一下几个开源组件,方便日后大家做技术选型。

开源组件对比附各大开源组件的地址:

zipkin -> https://zipkin.io/Jaeger -> https://www.jaegertracing.io/Pinpoint -> https://github.com/pinpoint-apm/pinpointSkyWalking -> http://skywalking.apache.org/接下来介绍一下Zipkin基本实现。

分布式链路追踪系统Zipkin实现

Zipkin 是 Twitter 的一个开源项目,它基于 Google Dapper 实现,它致力于收集服务的定时数据,以解决微服务架构中的延迟问题,包括数据的收集、存储、查找和展现。

Zipkin基本架构

Zipkin架构在服务运行的过程中会产生很多链路信息,产生数据的地方可以称之为Reporter。将链路信息通过多种传输方式如HTTP,RPC,kafka消息队列等发送到Zipkin的采集器,Zipkin处理后最终将链路信息保存到存储器中。运维人员通过UI界面调用接口即可查询调用链信息。

Zipkin核心组件

Zipkin有四大核心组件

Zipkin核心组件(1)Collector

一旦Collector采集线程获取到链路追踪数据,Zipkin就会对其进行验证、存储和索引,并调用存储接口保存数据,以便进行查找。

(2)Storage

Zipkin Storage最初是为了在Cassandra上存储数据而构建的,因为Cassandra是可伸缩的,具有灵活的模式,并且在Twitter中大量使用。除了Cassandra,还支持支持ElasticSearch和MySQL存储,后续可能会提供第三方扩展。

(3)Query Service

链路追踪数据被存储和索引之后,webui 可以调用query service查询任意数据帮助运维人员快速定位线上问题。query service提供了简单的json api来查找和检索数据。

(4)Web UI

Zipkin 提供了基本查询、搜索的web界面,运维人员可以根据具体的调用链信息快速识别线上问题。

总结

分布式链路追踪就是将每一次分布式请求还原成调用链路。链路追踪的核心概念:Trace、Span、Annotation、带内和带外数据、采样、存储。业界常用的开源组件都是基于谷歌Dapper论文演变而来;Zipkin核心组件有:Collector、Storage、Query Service、Web UI。


相关实践学习
分布式链路追踪Skywalking
Skywalking是一个基于分布式跟踪的应用程序性能监控系统,用于从服务和云原生等基础设施中收集、分析、聚合以及可视化数据,提供了一种简便的方式来清晰地观测分布式系统,具有分布式追踪、性能指标分析、应用和服务依赖分析等功能。 分布式追踪系统发展很快,种类繁多,给我们带来很大的方便。但在数据采集过程中,有时需要侵入用户代码,并且不同系统的 API 并不兼容,这就导致了如果希望切换追踪系统,往往会带来较大改动。OpenTracing为了解决不同的分布式追踪系统 API 不兼容的问题,诞生了 OpenTracing 规范。OpenTracing 是一个轻量级的标准化层,它位于应用程序/类库和追踪或日志分析程序之间。Skywalking基于OpenTracing规范开发,具有性能好,支持多语言探针,无侵入性等优势,可以帮助我们准确快速的定位到线上故障和性能瓶颈。 在本套课程中,我们将全面的讲解Skywalking相关的知识。从APM系统、分布式调用链等基础概念的学习加深对Skywalking的理解,从0开始搭建一套完整的Skywalking环境,学会对各类应用进行监控,学习Skywalking常用插件。Skywalking原理章节中,将会对Skywalking使用的agent探针技术进行深度剖析,除此之外还会对OpenTracing规范作整体上的介绍。通过对本套课程的学习,不止能学会如何使用Skywalking,还将对其底层原理和分布式架构有更深的理解。本课程由黑马程序员提供。
相关文章
|
5月前
|
Kubernetes 大数据 调度
Airflow vs Argo Workflows:分布式任务调度系统的“华山论剑”
本文对比了Apache Airflow与Argo Workflows两大分布式任务调度系统。两者均支持复杂的DAG任务编排、社区支持及任务调度功能,且具备优秀的用户界面。Airflow以Python为核心语言,适合数据科学家使用,拥有丰富的Operator库和云服务集成能力;而Argo Workflows基于Kubernetes设计,支持YAML和Python双语定义工作流,具备轻量化、高性能并发调度的优势,并通过Kubernetes的RBAC机制实现多用户隔离。在大数据和AI场景中,Airflow擅长结合云厂商服务,Argo则更适配Kubernetes生态下的深度集成。
596 34
|
11天前
|
存储 算法 安全
“卧槽,系统又崩了!”——别慌,这也许是你看过最通俗易懂的分布式入门
本文深入解析分布式系统核心机制:数据分片与冗余副本实现扩展与高可用,租约、多数派及Gossip协议保障一致性与容错。探讨节点故障、网络延迟等挑战,揭示CFT/BFT容错原理,剖析规模与性能关系,为构建可靠分布式系统提供理论支撑。
113 2
|
27天前
|
机器学习/深度学习 算法 安全
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
新型电力系统下多分布式电源接入配电网承载力评估方法研究(Matlab代码实现)
|
3月前
|
数据采集 缓存 NoSQL
分布式新闻数据采集系统的同步效率优化实战
本文介绍了一个针对高频新闻站点的分布式爬虫系统优化方案。通过引入异步任务机制、本地缓存池、Redis pipeline 批量写入及身份池策略,系统采集效率提升近两倍,数据同步延迟显著降低,实现了分钟级热点追踪能力,为实时舆情监控与分析提供了高效、稳定的数据支持。
分布式新闻数据采集系统的同步效率优化实战
|
5月前
|
NoSQL 算法 安全
分布式锁—1.原理算法和使用建议
本文主要探讨了Redis分布式锁的八大问题,包括非原子操作、忘记释放锁、释放其他线程的锁、加锁失败处理、锁重入问题、锁竞争问题、锁超时失效及主从复制问题,并提供了相应的优化措施。接着分析了Redis的RedLock算法,讨论其优缺点以及分布式专家Martin对其的质疑。此外,文章对比了基于Redis和Zookeeper(zk)的分布式锁实现原理,包括获取与释放锁的具体流程。最后总结了两种分布式锁的适用场景及使用建议,指出Redis分布式锁虽有性能优势但模型不够健壮,而zk分布式锁更稳定但部署成本较高。实际应用中需根据业务需求权衡选择。
|
8月前
|
运维 NoSQL 算法
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
本文深入探讨了基于Redis实现分布式锁时遇到的细节问题及解决方案。首先,针对锁续期问题,提出了通过独立服务、获取锁进程自己续期和异步线程三种方式,并详细介绍了如何利用Lua脚本和守护线程实现自动续期。接着,解决了锁阻塞问题,引入了带超时时间的`tryLock`机制,确保在高并发场景下不会无限等待锁。最后,作为知识扩展,讲解了RedLock算法原理及其在实际业务中的局限性。文章强调,在并发量不高的场景中手写分布式锁可行,但推荐使用更成熟的Redisson框架来实现分布式锁,以保证系统的稳定性和可靠性。
356 0
【📕分布式锁通关指南 04】redis分布式锁的细节问题以及RedLock算法原理
|
9月前
|
存储 运维 安全
盘古分布式存储系统的稳定性实践
本文介绍了阿里云飞天盘古分布式存储系统的稳定性实践。盘古作为阿里云的核心组件,支撑了阿里巴巴集团的众多业务,确保数据高可靠性、系统高可用性和安全生产运维是其关键目标。文章详细探讨了数据不丢不错、系统高可用性的实现方法,以及通过故障演练、自动化发布和健康检查等手段保障生产安全。总结指出,稳定性是一项系统工程,需要持续迭代演进,盘古经过十年以上的线上锤炼,积累了丰富的实践经验。
643 7
|
9月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
279 7
|
11月前
|
存储 Dubbo Java
分布式 RPC 底层原理详解,看这篇就够了!
本文详解分布式RPC的底层原理与系统设计,大厂面试高频,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 RPC 底层原理详解,看这篇就够了!
|
10月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
537 4

热门文章

最新文章