机器学习鸢尾花数据集分析

简介: 机器学习鸢尾花数据集分析

1 sklearn数据集的使用

鸢尾属(拉丁学名:Iris L.)是单子叶植物纲,鸢尾科多年生草本植物,有块茎或匍匐状根茎;叶剑形,嵌叠状;花美丽,花序生于分枝的顶端或仅在花茎顶端生1朵花;花较大;花被花瓣状,有一长或短的管,外弯,花柱分枝扩大,花瓣状而有颜色,外展而覆盖着雄蕊;子房下位,胚珠多数,果为蒴果。

本属模式种:德国鸢尾(Iris germanica L. )原产欧洲,中国各地常见栽培。

鸢尾属约300种,分布于北温带 [1] ,少数入药,鸢尾根茎为诱吐剂或缓下剂,具消炎作用。

该属植物鸢尾花大而美丽,叶片青翠碧绿,观赏价值很高。很多种类供庭园观赏用,在园林中可用作布置花坛,栽植于水湿畦地、池边湖畔,或布置成鸢尾专类花园,亦可作切花及地被植物,是一种重要的庭园植物。

机器学习Sklearn数据集:https://blog.csdn.net/ZGL_cyy/article/details/125469443

  • 以鸢尾花数据集为例:

2 sklearn数据集返回值介绍

  • load和fetch返回的数据类型datasets.base.Bunch(字典格式)
  • data:特征数据数组,是 [n_samples * n_features] 的二维 numpy.ndarray 数组
  • target:标签数组,是 n_samples 的一维 numpy.ndarray 数组
  • DESCR:数据描述
  • feature_names:特征名,新闻数据,手写数字、回归数据集没有
  • target_names:标签名
from sklearn.datasets import load_iris
# 获取鸢尾花数据集
iris = load_iris()
print("鸢尾花数据集的返回值:\n", iris)
# 返回值是一个继承自字典的Bench
print("鸢尾花的特征值:\n", iris["data"])
print("鸢尾花的目标值:\n", iris.target)
print("鸢尾花特征的名字:\n", iris.feature_names)
print("鸢尾花目标值的名字:\n", iris.target_names)
print("鸢尾花的描述:\n", iris.DESCR)

运行结果:

3 查看数据分布

通过创建一些图,以查看不同类别是如何通过特征来区分的。 在理想情况下,标签类将由一个或多个特征对完美分隔。 在现实世界中,这种理想情况很少会发生。

  • Seaborn 是基于 Matplotlib 核心库进行了更高级的 API 封装,可以让你轻松地画出更漂亮的图形。而 Seaborn 的漂亮主要体现在配色更加舒服、以及图形元素的样式更加细腻。

  • 安装 pip3 install seaborn
  • seaborn.lmplot() 是一个非常有用的方法,它会在绘制二维散点图时,自动完成回归拟合
  • sns.lmplot() 里的 x, y 分别代表横纵坐标的列名,
  • data= 是关联到数据集,
  • hue=*代表按照 species即花的类别分类显示,
  • fit_reg=是否进行线性拟合。
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
# 把数据转换成dataframe的格式
iris_d = pd.DataFrame(iris['data'], columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
iris_d['Species'] = iris.target
def plot_iris(iris, col1, col2):
    sns.lmplot(x = col1, y = col2, data = iris, hue = "Species", fit_reg = False)
    plt.xlabel(col1)
    plt.ylabel(col2)
    plt.title('鸢尾花种类分布图')
    plt.show()
plot_iris(iris_d, 'Petal_Width', 'Sepal_Length')

4 数据集的划分

机器学习一般的数据集会划分为两个部分:

思考:拿到的数据是否全部都用来训练一个模型?

  • 训练数据:用于训练,构建模型
  • 测试数据:在模型检验时使用,用于评估模型是否有效

划分比例:

  • 训练集:70% 80% 75%
  • 测试集:30% 20% 30%

数据集划分api

  • x 数据集的特征值
  • y 数据集的标签值
  • test_size 测试集的大小,一般为float
  • random_state 随机数种子,不同的种子会造成不同的随机采样结果。相同的种子采样结果相同。
  • return 测试集特征训练集特征值值,训练标签,测试标签(默认随机取)
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
def datasets_demo():
    """
    对鸢尾花数据集的演示
    :return: None
    """
    # 1、获取鸢尾花数据集
    iris = load_iris()
    print("鸢尾花数据集的返回值:\n", iris)
    # 返回值是一个继承自字典的Bench
    print("鸢尾花的特征值:\n", iris["data"])
    print("鸢尾花的目标值:\n", iris.target)
    print("鸢尾花特征的名字:\n", iris.feature_names)
    print("鸢尾花目标值的名字:\n", iris.target_names)
    print("鸢尾花的描述:\n", iris.DESCR)
    # 2、对鸢尾花数据集进行分割
    # 训练集的特征值x_train 测试集的特征值x_test 训练集的目标值y_train 测试集的目标值y_test
    x_train, x_test, y_train, y_test = train_test_split(iris.data, iris.target, random_state=22)
    print("x_train:\n", x_train.shape)
    # 随机数种子
    x_train1, x_test1, y_train1, y_test1 = train_test_split(iris.data, iris.target, random_state=6)
    x_train2, x_test2, y_train2, y_test2 = train_test_split(iris.data, iris.target, random_state=6)
    print("如果随机数种子不一致:\n", x_train == x_train1)
    print("如果随机数种子一致:\n", x_train1 == x_train2)
    return None

运行结果:

x_train:
 (112, 4)

5 总结

  • 获取数据集【知道】
  • 小数据:
  • sklearn.datasets.load_*
  • 大数据集:
  • sklearn.datasets.fetch_*

数据集返回值介绍【知道】

  • 返回值类型是bunch–是一个字典类型
  • 返回值的属性:
  • data:特征数据数组
  • target:标签(目标)数组
  • DESCR:数据描述
  • feature_names:特征名,
  • target_names:标签(目标值)名
  • 数据集的划分【掌握】
  • sklearn.model_selection.train_test_split(arrays, *options)
  • 参数:
  • x – 特征值
  • y – 目标值
  • test_size – 测试集大小
  • ramdom_state – 随机数种子
  • 返回值:
  • x_train, x_test, y_train, y_test
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
270 3
|
11天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
33 1
|
1月前
|
数据采集 移动开发 数据可视化
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
这篇文章介绍了数据清洗、分析、可视化、模型搭建、训练和预测的全过程,包括缺失值处理、异常值处理、特征选择、数据归一化等关键步骤,并展示了模型融合技术。
54 1
模型预测笔记(一):数据清洗分析及可视化、模型搭建、模型训练和预测代码一体化和对应结果展示(可作为baseline)
|
1月前
|
XML JSON 数据可视化
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
本文详细介绍了不同数据集格式之间的转换方法,包括YOLO、VOC、COCO、JSON、TXT和PNG等格式,以及如何可视化验证数据集。
68 1
数据集学习笔记(二): 转换不同类型的数据集用于模型训练(XML、VOC、YOLO、COCO、JSON、PNG)
|
1月前
|
机器学习/深度学习 数据可视化 数据挖掘
机器学习中空间和时间自相关的分析:从理论基础到实践应用
空间和时间自相关是数据分析中的重要概念,揭示了现象在空间和时间维度上的相互依赖关系。本文探讨了这些概念的理论基础,并通过野火风险预测的实际案例,展示了如何利用随机森林模型捕捉时空依赖性,提高预测准确性。
50 0
机器学习中空间和时间自相关的分析:从理论基础到实践应用
|
1月前
|
机器学习/深度学习 数据可视化 算法
机器学习中的回归分析:理论与实践
机器学习中的回归分析:理论与实践
|
1月前
|
机器学习/深度学习 数据采集 算法
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
【Python篇】从零到精通:全面分析Scikit-Learn在机器学习中的绝妙应用
38 2
|
1月前
|
机器学习/深度学习 数据挖掘
二、机器学习之回归模型分析
二、机器学习之回归模型分析
102 0
|
2月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
50 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
2月前
|
机器学习/深度学习 存储 数据挖掘
Hologres 与机器学习的融合:为实时分析添加预测性分析功能
【9月更文第1天】随着数据科学的发展,企业越来越依赖于从数据中获取洞察力来指导决策。传统的数据仓库主要用于存储和查询历史数据,而现代的数据仓库如 Hologres 不仅提供了高性能的查询能力,还能够支持实时数据分析。将 Hologres 与机器学习技术相结合,可以在实时数据流中引入预测性分析,为企业提供更深入的数据洞见。本文将探讨如何将 Hologres 与机器学习集成,以便实现实时的预测性分析。
86 4

热门文章

最新文章