机器学习算法之欠拟合和过拟合

简介: 机器学习算法之欠拟合和过拟合

1.定义

过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)

欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

那么是什么原因导致模型复杂?

线性回归进行训练学习的时候,模型会变得复杂,因为线性回归有两种关系(线性关系和非线性关系),非线性关系的数据,存在很多无用的特征,或者现实中的事物特征跟目标值的关系并不是简单的线性关系。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

2.原因以及解决办法

2.1 欠拟合

原因:学习到数据的特征过少

解决办法:

1)添加其他特征项。有时模型出现欠拟合,是因为特征项不够。可以通过添加其他特征项来很好地解决。例如「组合」、「泛化」、「相关性」三类特征是特征添加的重要手段,无论在什么场景,都可以照葫芦画瓢,总会得到意想不到的效果。除上面的特征之外,「上下文特征」、「平台特征」等等,都可以作为特征添加的首选项。

2)添加多项式特征。此操作在机器学习算法里面用的很普遍,例如将线性模型通过添加二次项或者三次项使模型泛化能力更强。

2.2 过拟合

原因:原始特征过多,存在一些嘈杂特征,。模型过于复杂是因为模型尝试去兼顾各个测试数据点

解决办法:

1)重新清洗数据。导致过拟合的一个原因也有可能是数据不纯。此类情况就需要重新清洗数据。

2)增大数据的训练量。还有一个原因就是用于训练的数据量太小,即训练数据占总数据的比例过小。

3)正则化(下面我们会详细讲解)

4)减少特征维度,防止维灾难(文章末尾会讲解)

2.3 图解过拟合和欠拟合

3.正则化

3.1 什么是正则化

数据提供的特征可能影响模型复杂度或者这个特征的数据点异常较多,所以算法在学习时,应尽量减少这个特征的影响(甚至删除这个特征的影响),这就是正则化。

简单来说,正则化是一种为了减小测试误差而发生的行为(有时候会增加训练误差)。在构造机器学习模型时,最终目的是让模型在面对新数据的时候,可以有很好的表现。当你用比较复杂的模型比如神经网络,去拟合数据时,很容易出现过拟合现象(训练集表现很好,测试集表现较差),这会导致模型的泛化能力下降,此时,我们就需要使用正则化,降低模型的复杂度。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

在这里针对回归,选择正则化。但是对于其他机器学习算法如分类算法来说也会出现这样的问题,除了一些算法本身作用之外(决策树、神经网络),更多情况下也会自己做特征选择,包括删除、合并一些特征。

3.2 正则化类别

L1正则化

作用:可以使得其中一些 W 的值直接为0,删除这个特征的影响LASSO 回归

L2正则化

作用:可以使得其中一些 W 的值都很小,接近于0,削弱某个特征的影响优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象Ridge 回归

注:调整时候,算法并不知道某个特征影响,而是去调整参数得出优化的结果

4.维灾难

4.1 什么是维灾难

随着维度的增加,分类器性能逐步上升,到达某点之后,其性能便逐渐下降

有一系列的图片,每张图片的内容可能是猫也可能是狗。我们需要构造一个分类器,使其能够对猫、狗自动的分类。首先,要寻找到一些能够描述猫和狗的特征,这样我们的分类算法就可以利用这些特征去识别物体。猫和狗的皮毛颜色可能是一个很好的特征。考虑到红绿蓝这三种构成图像的基色,制作了一个简单的 Fisher 分类器:



If  0.5*red + 0.3*green + 0.2*blue > 0.6 : return cat;    else return dog;

只使用颜色特征可能无法得到一个足够准确的分类器,那么不妨加入一些诸如图像纹理(图像灰度值在其 XY 方向的导数 dxdy),这样就有5个特征( RedBlueGreendxdy)来设计我们的分类器:

也许分类器准确率依然无法达到要求,这就需要加入更多的特征,如此下去,可能会得到上百个特征。那是不是我们的分类器性能会随着特征数量的增加而逐步提高呢?答案也许有些让人沮丧。事实上,当特征数量达到一定规模后,分类器的性能是在下降的。更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

随着维度(特征数量)的增加,分类器的性能却下降了,这就是维灾难

4.2 维数灾难与过拟合

假设猫和狗图片的数量是有限的(样本数量总是有限的),比如有10张图片,接下来就用这仅有的10张图片训练我们的分类器。

增加一个特征,比如绿色,这样特征维数扩展到了2维:

但在增加一个特征后,我们依然无法找到一条简单的直线将它们有效分类。不妨再增加一个特征,比如蓝色,扩展到3维特征空间:

在3维特征空间中,就很容易找到一个分类平面,将训练集上的猫和狗进行有效的分类:

这样看来,在高维空间中,似乎分类器性能更优。

从1维到3维,给我们的感觉是:维数越高,分类性能越优。然而,维数过高将导致一定的问题:在一维特征空间下,假设一个维度的宽度为5个单位,这样样本密度为10/5=2;在2维特征空间下,10个样本所分布的空间大小25,这样样本密度为10/25=0.4;在3维特征空间下,10个样本分布的空间大小为125,样本密度就变为了10/125=0.08。

如果继续增加特征数量,维度也会继续增加,样本将变得越来越稀疏。此时,虽然更容易找到一个超平面将目标分开,但如果我们将高维空间向低维空间投影,高维空间隐藏的问题也会显现出来:过多的特征导致过拟合现象,即训练集上表现良好,但是对新数据缺乏泛化能力。

高维空间训练形成的线性分类器,相当于在低维空间的一个复杂的非线性分类器,这种分类器过多的强调了训练集的准确率甚至于对一些 错误 或者 异常 的数据也进行了学习,而正确的数据却无法覆盖整个特征空间。为此,这样得到的分类器在对新数据进行预测时将会出现错误。这种现象称之为过拟合,同时也是维灾难的直接体现。

简单的线性分类器在训练数据上的表现不如非线性分类器,但由于线性分类器的学习过程中对噪声不像非线性分类器那样敏感,因此对新数据具备更优的泛化能力。换句话说,通过使用更少的特征,避免了维数灾难的发生(也即避免了高维情况下的过拟合)更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

由于高维而带来的数据稀疏性问题:假设有一个特征,它的取值范围 D 在0到1之间均匀分布,并且对狗和猫来说其值都是唯一的。现在利用这个特征来设计分类器。

如果训练数据覆盖了取值范围的20%(e.g 0到0.2),那么所使用的训练数据就占总样本量的20%。上升到二维情况下,覆盖二维特征空间20%的面积,则需要在每个维度上取得45%的取值范围。在三维情况下,要覆盖特征空间20%的体积,则需要在每个维度上取得58%的取值范围 ... 在维度接近一定程度时,要取得同样的训练样本数量,则几乎要在每个维度上取得接近100%的取值范围,或者增加总样本数量,但样本数量也总是有限的。

这样一直增加特征维数,由于样本分布越来越稀疏,如果要避免过拟合的出现,就不得不持续增加样本数量。

数据在高维空间的中心比在边缘区域具备更大的稀疏性,数据更倾向于分布在空间的边缘区域:

不属于单位圆的训练样本比搜索空间的中心更接近搜索空间的角点。这些样本很难分类,因为它们的特征值差别很大(例如,单位正方形的对角的样本)。

一个有趣的问题是,当我们增加特征空间的维度时,圆(超球面)的体积相对于正方形(超立方体)的体积如何发生变化。尺寸 d 的单位超立方体的体积总是1 ^ d = 1。尺寸 d 和半径0.5的内切超球体的体积可以计算为:

在高维空间中,大多数训练数据驻留在定义特征空间的超立方体的角落中。如前所述,特征空间角落中的实例比围绕超球体质心的实例难以分类。



an 8D hypercube which has 2^8 = 256 corners

事实证明,许多事物在高维空间中表现得非常不同。例如,如果你选择一个单位平方(1×1平方)的随机点,它将只有大约0.4%的机会位于小于0.001的边界(换句话说,随机点位于任何维度「极端」这是非常不可能的)。但是在一个10000维单位超立方体(1×1×1立方体,有1万个1)中,这个概率大于99.999999%。高维超立方体中的大部分点都非常靠近边界。更难区分的是:如果在一个单位正方形中随机抽取两个点,这两个点之间的距离平均约为0.52。如果在单位三维立方体中选取两个随机点,则平均距离将大致为0.66。但是在一个100万维的超立方体中随机抽取两点呢?那么平均距离将是大约408.25(大约1,000,000 / 6)!

非常违反直觉:当位于相同的单位超立方体内时,两点如何分离?这个事实意味着高维数据集有可能非常稀疏,大多数训练实例可能彼此远离。当然,这也意味着一个新实例可能离任何训练实例都很远,这使得预测的可信度表现得比在低维度数据中要差。训练集的维度越多,过度拟合的风险就越大更多精彩文章请关注公众号『Pythonnote』或者『全栈技术精选』

理论上讲,维度灾难的一个解决方案是增加训练集的大小以达到足够密度的训练实例。不幸的是,在实践中,达到给定密度所需训练实例的数量随着维度的数量呈指数增长。如果只有100个特征(比MNIST问题少得多),那么为了使训练实例的平均值在0.1以内,需要有比可观察宇宙中的原子更多的训练实例,假设它们在所有维度上均匀分布。

对于8维超立方体,大约98%的数据集中在其256个角上。结果,当特征空间的维度达到无穷大时,从采样点到质心的最小和最大欧几里得距离的差与最小距离本身只比趋于零:

距离测量 开始失去其在高维空间中测量的 有效性,由于分类器取决于这些距离测量,因此在较低维空间中分类通常更容易,其中较少特征用于描述感兴趣对象。

如果理论上,无限数量的训练样本可用,则维度的诅咒不适用,我们可以简单地使用无数个特征来获得完美的分类。训练数据量越小,应使用的功能就越少。如果 N 个训练样本足以覆盖单位区间大小的 1D 特征空间,则需要 N ^ 2 个样本来覆盖具有相同密度的 2D 特征空间,并且在 3D 特征空间中需要 N ^ 3 个样本。换句话说,所需的训练实例数量随着使用的维度数量呈指数增长

相关文章
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
25天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
8天前
|
机器学习/深度学习
深入理解机器学习中的过拟合与正则化
深入理解机器学习中的过拟合与正则化
|
1月前
|
机器学习/深度学习 算法 Python
深度解析机器学习中过拟合与欠拟合现象:理解模型偏差背后的原因及其解决方案,附带Python示例代码助你轻松掌握平衡技巧
【10月更文挑战第10天】机器学习模型旨在从数据中学习规律并预测新数据。训练过程中常遇过拟合和欠拟合问题。过拟合指模型在训练集上表现优异但泛化能力差,欠拟合则指模型未能充分学习数据规律,两者均影响模型效果。解决方法包括正则化、增加训练数据和特征选择等。示例代码展示了如何使用Python和Scikit-learn进行线性回归建模,并观察不同情况下的表现。
271 3
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
14天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
32 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能

热门文章

最新文章