python技术面试题(八)

简介: python技术面试题(八)

笔试题

1.python中is和==的区别?

答:is是同一性运算符,是判断两个对象的id地址是否相同,是否指向同一块区域;==是比较操作符,用来判断两个对象的数据类型和值是否相同。

2.Django里QuerySet的get和filter方法的区别?

答:filter返回的是一个对象列表,如果查不到,返回一个空列表。get得到的是一个具体的对象,如果查不到,会报错。

3.列出至少4种HTTP请求返回状态码,并解释其意思。

状态码 解释说明
302 跳转,新的url在响应的location头中给出
303 浏览器对于POST的响应进行重定向
307 浏览器对于GET的响应重定向至新的url
503 服务器维护或者负载过重未应答

只列出一些特殊的,常见的大家都知道了,此处不做列出。

4.多线程和多进程的区别?

进程是资源分配的单位,线程是操作系统调度的单位。进程切换需要的资源最大,效率低;线程切换需要的资源一般,效率一般(不考虑GIL的情况)。多进程和多线程根据CPU核数不一样可能是并行的。线程是基于进程存在的。

5.Flask中请求钩子的理解和应用?

在客户端和服务器交互的过程中,有些准备工作扫尾工作需要处理的时候,为了让每个视图函数避免编写重复的代码,Flask提供了通用设施的功能,这就是请求钩子

我们的项目中,在完善CSRFToken逻辑和拦截普通用户进入管理员页面的时候,用到了请求钩子。

请求钩子是通过装饰器的形式实现的,有4种

1.before_first_request:在处理第一个请求前执行

2.before_request:在每次请求前执行,在该装饰函数中,一旦return,视图函数不再执行

a.接受一个参数:视图函数作出的响应

b.在此函数中可以对响应值,在返回之前做最后一步处理,再返回

3.after_request:如果没有抛出错误,在每次请求后执行

4.teardown_request:在每次请求后执行

a.接受一个参数:用来接收错误信息

但是我们常用的只有2和3两种,在项目中具体的代码展示一下,方便大家进行回忆:

 #使用请求钩子拦截所有的请求,通过的在cookie中设置csrf_token
     @app.after_request
     def after_request(resp):
        #调用系统方法,获取csrf_token
        csrf_token = generate_csrf()
         #将csrf_token设置到cookie中
         resp.set_cookie("csrf_token",csrf_token)
        #返回响应
        return resp
# 使用请求钩子,拦截用户的请求,只有访问了admin_blue,所装饰的视图函数需要拦截
# 1.拦截的是访问了非登录页面
# 2.拦截的是普通的用户
@admin_blue.before_request
def before_request():
    if not request.url.endswith("/admin/login"):
        if not session.get("is_admin"):
            return redirect("/")


intern机制

Python3的解释器中实现了小数字和字符串缓存的机制,小数字的缓存范围是[-5 ~ 256],字符串的缓存位数默认是20位。

字符串缓存机制实验:

>>> a = 'xx' * 20
>>> b = 'xx' * 20
>>> a is b
False
>>> a = 'x' * 3
>>> b = 'x' * 3
>>> a is b
True

可以看出字符串长度没有超过20,两个id是一致的,因为小于20,提前缓存好了,我们赋值操作其实是一个引用,两个都指向同一块内存空间。如果长度超过20,没有缓存,会新开辟内存,所以他们的id地址不一样。

小数字的缓存机制实验:

>>> a = -6
>>> b = -6
>>> a is b
False
>>> a = -5
>>> b = -5
>>> a is b
True

可以看出如果是-5的话,两个变量的id是一样的,因为提前缓存好了,他们只是一个引用,指向同一块空间地址。如果是-6的话就相当于重新开辟内存空间。

还有一种情况,就是如果两个字符串中含有除数字、字母下划线的任意一个符号,那么会触发intern机制,他们的内存地址也是不一样的。不论你的字符串多短。


gc模块

一.垃圾回收机制

Python中的垃圾回收是以引用计数为主,分代收集为辅。

1、导致引用计数+1的情况

  • 对象被创建,例如a=23
  • 对象被引用,例如b=a
  • 对象被作为参数,传入到一个函数中,例如func(a)
  • 对象作为一个元素,存储在容器中,例如list1=[a,a]

2、导致引用计数-1的情况

  • 对象的别名被显式销毁,例如del a
  • 对象的别名被赋予新的对象,例如a=24
  • 一个对象离开它的作用域,例如f函数执行完毕时,func函数中的局部变量(全局变量不会)
  • 对象所在的容器被销毁,或从容器中删除对象

3、查看一个对象的引用计数

import sys
a = "hello world"
sys.getrefcount(a)

可以查看a对象的引用计数,但是比正常计数大1,因为调用函数的时候传入a,这会让a的引用计数+1

二.循环引用导致内存泄露

内存泄漏

  1. 申请了某些内存,但是忘记了释放,那么这就造成了内存的浪费,久而久之内存就不够用了

1. 让程序产生内存泄漏

import gc
class ClassA():
    def __init__(self):
        print('object born,id:%s'%str(id(self)))
def f2():
    while True:
        c1 = ClassA()
        c2 = ClassA()
        c1.t = c2
        c2.t = c1
        del c1
        del c2
#python默认是开启垃圾回收的,可以通过下面代码来将其关闭
gc.disable()
f2()

执行f2(),进程占用的内存会不断增大。

  • 创建了c1,c2后这两块内存的引用计数都是1,执行 c1.t=c2c2.t=c1后,这两块内存的引用计数变成2.
  • 在del c1后,引用计数变为1,由于不是为0,所以c1对象不会被销毁;同理,c2对象的引用数也是1。
  • python默认是开启垃圾回收功能的,但是由于以上程序已经将其关闭,因此导致垃圾回收器都不会回收它们,所以就会导致内存泄露。

三.垃圾回收

class ClassA():
    def __init__(self):
        print('object born,id:%s'%str(id(self)))
def f2():
    while True:
        c1 = ClassA()
        c2 = ClassA()
        c1.t = c2
        c2.t = c1
        del c1
        del c2
        gc.collect()#手动调用垃圾回收功能,这样在自动垃圾回收被关闭的情况下,也会进行回收
#python默认是开启垃圾回收的,可以通过下面代码来将其关闭
gc.disable()
f2()

有三种情况会触发垃圾回收:

  1. 当gc模块的计数器达到阀值的时候,自动回收垃圾
  2. 调用gc.collect(),手动回收垃圾
  3. 程序退出的时候,python解释器来回收垃圾

四. gc模块的自动垃圾回收触发机制

在Python中,采用分代收集的方法。把对象分为三代,一开始,对象在创建的时候,放在一代中,如果在一次一代的垃圾检查中,该对象存活下来,就会被放到二代中,同理在一次二代的垃圾检查中,该对象存活下来,就会被放到三代中。

gc模块里面会有一个长度为3的列表的计数器,可以通过gc.get_count()获取。

例如(488,3,0),其中488是指距离上一次一代垃圾检查,Python分配内存的数目减去释放内存的数目,注意是内存分配,而不是引用计数的增加。例如:

print gc.get_count() # (590, 8, 0)
a = ClassA()
print gc.get_count() # (591, 8, 0)
del a
print gc.get_count() # (590, 8, 0)

3是指距离上一次二代垃圾检查,一代垃圾检查的次数,同理,0是指距离上一次三代垃圾检查,二代垃圾检查的次数。

gc模快有一个自动垃圾回收的 阀值,即通过gc.get_threshold函数获取到的长度为3的元组,例如(700,10,10) 每一次计数器的增加,gc模块就会检查增加后的计数是否达到阀值的数目,如果是,就会执行对应的代数的垃圾检查,然后重置计数器

例如,假设阀值是(700,10,10):

  1. 当计数器从(699,3,0)增加到(700,3,0),gc模块就会执行gc.collect(0),即检查一代对象的垃圾,并重置计数器为(0,4,0)
  2. 当计数器从(699,9,0)增加到(700,9,0),gc模块就会执行gc.collect(1),即检查一、二代对象的垃圾,并重置计数器为(0,0,1)
  3. 当计数器从(699,9,9)增加到(700,9,9),gc模块就会执行gc.collect(2),即检查一、二、三代对
相关文章
|
9天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
28 2
|
15天前
|
算法 Python
Python图论探索:从理论到实践,DFS与BFS遍历技巧让你秒变技术大牛
图论在数据结构与算法中占据重要地位,应用广泛。本文通过Python代码实现深度优先搜索(DFS)和广度优先搜索(BFS),帮助读者掌握图的遍历技巧。DFS沿路径深入搜索,BFS逐层向外扩展,两者各具优势。掌握这些技巧,为解决复杂问题打下坚实基础。
27 2
|
17天前
|
开发框架 开发者 Python
探索Python中的装饰器:技术感悟与实践
【10月更文挑战第31天】 在编程世界中,装饰器是Python中一种强大的工具,它允许我们在不修改函数代码的情况下增强函数的功能。本文将通过浅显易懂的方式,带你了解装饰器的概念、实现原理及其在实际开发中的应用。我们将一起探索如何利用装饰器简化代码、提高可读性和复用性,同时也会分享一些个人的技术感悟,帮助你更好地掌握这项技术。
32 2
|
21天前
|
数据采集 Web App开发 iOS开发
如何利用 Python 的爬虫技术获取淘宝天猫商品的价格信息?
本文介绍了使用 Python 爬虫技术获取淘宝天猫商品价格信息的两种方法。方法一使用 Selenium 模拟浏览器操作,通过定位页面元素获取价格;方法二使用 Requests 和正则表达式直接请求页面内容并提取价格。每种方法都有详细步骤和代码示例,但需注意反爬措施和法律法规。
|
22天前
|
数据采集 存储 Web App开发
利用Python 的爬虫技术淘宝天猫销量和库存
使用 Python 爬虫技术获取淘宝天猫商品销量和库存的步骤包括:1. 安装 Python 和相关库(如 selenium、pandas),下载浏览器驱动;2. 使用 selenium 登录淘宝或天猫;3. 访问商品页面,分析网页结构,提取销量和库存信息;4. 处理和存储数据。注意网页结构可能变化,需遵守法律法规。
|
23天前
|
数据库 开发者 Python
“Python异步编程革命:如何从编程新手蜕变为并发大师,掌握未来技术的制胜法宝”
【10月更文挑战第25天】介绍了Python异步编程的基础和高级技巧。文章从同步与异步编程的区别入手,逐步讲解了如何使用`asyncio`库和`async`/`await`关键字进行异步编程。通过对比传统多线程,展示了异步编程在I/O密集型任务中的优势,并提供了最佳实践建议。
17 1
|
1月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
1月前
|
网络协议 安全 Java
难懂,误点!将多线程技术应用于Python的异步事件循环
难懂,误点!将多线程技术应用于Python的异步事件循环
64 0
|
1月前
|
Java C++ Python
【面试宝典】深入Python高级:直戳痛点的题目演示(下)
【面试宝典】深入Python高级:直戳痛点的题目演示(下)