1.8 Hadoop读数据流程
详细步骤:
1)客户端通过Distributed FileSystem向namenode请求下载文件,namenode通过查询元数据,找到文件块所在的datanode地址。
2)挑选一台datanode(就近原则,然后随机)服务器,请求读取数据。
3)datanode开始传输数据给客户端(从磁盘里面读取数据输入流,以packet为单位来做校验,大小为64k)。
4)客户端以packet为单位接收,先在本地缓存,然后写入目标文件。作者:李小李的路
1.9 SecondaryNameNode的作用
NameNode职责是管理元数据信息,DataNode的职责是负责数据具体存储,那么SecondaryNameNode的作用是什么?
答:它的职责是合并NameNode的edit logs到fsimage文件中。
每达到触发条件 [达到一个小时,或者事物数达到100万],会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint),如下图所示:
1.10 HDFS的扩容 缩容(面试)
1.动态扩容
随着公司业务的增长,数据量越来越大,原有的datanode节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点。也就是俗称的**动态扩容**。
随着公司业务的增长,数据量越来越大,原有的datanode节点的容量已经不能满足存储数据的需求,需要在原有集群基础上动态添加新的数据节点。也就是俗称的**动态扩容**。 有时候旧的服务器需要进行退役更换,暂停服务,可能就需要在当下的集群中停止某些机器上hadoop的服务,俗称**动态缩容**。
1.1. 基础准备
在基础准备部分,主要是设置hadoop运行的系统环境
修改新机器系统hostname(通过/etc/sysconfig/network进行修改)
修改hosts文件,将集群所有节点hosts配置进去(集群所有节点保持hosts文件统一)
设置NameNode到DataNode的免密码登录(ssh-copy-id命令实现)
修改主节点slaves文件,添加新增节点的ip信息(集群重启时配合一键启动脚本使用)
在新的机器上上传解压一个新的hadoop安装包,从主节点机器上将hadoop的所有配置文件,scp到新的节点上。
1.2. 添加datanode
在namenode所在的机器的
/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop目录下创建dfs.hosts文件
cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop vim dfs.hosts 添加如下主机名称(包含新服役的节点) node-1 node-2 node-3 node-4
在namenode机器的hdfs-site.xml配置文件中增加dfs.hosts属性
cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop
vim hdfs-site.xml
<property> <name>dfs.hosts</name> <value>/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop/dfs.hosts</value> </property>
dfs.hosts属性的意义:命名一个文件,其中包含允许连接到namenode的主机列表。必须指定文件的完整路径名。如果该值为空,则允许所有主机。相当于一个白名单,也可以不配置。
在新的机器上单独启动datanode: hadoop-daemon.sh start datanode
刷新页面就可以看到新的节点加入进来了
1.3.datanode负载均衡服务
新加入的节点,没有数据块的存储,使得集群整体来看负载还不均衡。因此最后还需要对hdfs负载设置均衡,因为默认的数据传输带宽比较低,可以设置为64M,即hdfs dfsadmin -setBalancerBandwidth 67108864即可
默认balancer的threshold为10%,即各个节点与集群总的存储使用率相差不超过10%,我们可将其设置为5%。然后启动Balancer,
sbin/start-balancer.sh -threshold 5,等待集群自均衡完成即可。
1.4.添加nodemanager
在新的机器上单独启动nodemanager:
yarn-daemon.sh start nodemanager
在ResourceManager,通过yarn node -list查看集群情况
2.动态缩容
2.1.添加退役节点
在namenode所在服务器的hadoop配置目录etc/hadoop下创建dfs.hosts.exclude文件,并添加需要退役的主机名称。
注意:该文件当中一定要写真正的主机名或者ip地址都行,不能写node-4
node04.hadoop.com
在namenode机器的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性
cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop
vim hdfs-site.xml
<property> <name>dfs.hosts.exclude</name> <value>/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop/dfs.hosts.exclude</value> </property>
dfs.hosts.exclude属性的意义:命名一个文件,其中包含不允许连接到namenode的主机列表。必须指定文件的完整路径名。如果值为空,则不排除任何主机。
2.2.刷新集群
在namenode所在的机器执行以下命令,刷新namenode,刷新resourceManager。
hdfs dfsadmin -refreshNodes
yarn rmadmin –refreshNodes
等待退役节点状态为decommissioned(所有块已经复制完成),停止该节点及节点资源管理器。注意:如果副本数是3,服役的节点小于等于3,是不能退役成功的,需要修改副本数后才能退役。
node-4执行以下命令,停止该节点进程
cd /export/servers/hadoop-2.6.0-cdh5.14.0
sbin/hadoop-daemon.sh stop datanode
sbin/yarn-daemon.sh stop nodemanager
namenode所在节点执行以下命令刷新namenode和resourceManager
hdfs dfsadmin –refreshNodes
yarn rmadmin –refreshNodes
namenode所在节点执行以下命令进行均衡负载
cd /export/servers/hadoop-2.6.0-cdh5.14.0/
sbin/start-balancer.sh
1.11 HDFS安全模式
安全模式是HDFS所处的一种特殊状态,在这种状态下,文件系统只接受读数据请求,而不接受删除 修改等变更请求,是一种保护机制,用于保证集群中的数据块的安全性。
安全模式是HDFS所处的一种特殊状态,在这种状态下,文件系统只接受读数据请求,而不接受删除 修改等变更请求,是一种保护机制,用于保证集群中的数据块的安全性。 在NameNode主节点启动时,HDFS首先进入安全模式,集群会开始检查数据块的完整性。DataNode在启动的时候会向namenode汇报可用的block信息,当整个系统达到安全标准时,HDFS自动离开安全模式。
手动进入安全模式
hdfs dfsadmin -safemode enter
手动离开安全模式
hdfs dfsadmin -safemode leave
1.12 机架感知
hadoop自身是没有机架感知能力的,必须通过人为的设定来达到这个目的。一种是通过配置一个脚本来进行映射;另一种是通过实现DNSToSwitchMapping接口的resolve()方法来完成网络位置的映射。
通过机架感知,达到数据块冗余度的要求。,分区域是容灾为了防止rack1宕机最先考虑,同一个机架说明网络一样,传递较快.具体算法不需要深究.因为是实现好的.
1 写一个脚本,然后放到hadoop的core-site.xml配置文件中,用namenode和jobtracker进行调用。
#!/usr/bin/python #-*-coding:UTF-8 -*- import sys rack = {"hadoop-node-31":"rack1", "hadoop-node-32":"rack1", "hadoop-node-33":"rack1", "hadoop-node-34":"rack1", "hadoop-node-49":"rack2", "hadoop-node-50":"rack2", "hadoop-node-51":"rack2", "hadoop-node-52":"rack2", "hadoop-node-53":"rack2", "hadoop-node-54":"rack2", "192.168.1.31":"rack1", "192.168.1.32":"rack1", "192.168.1.33":"rack1", "192.168.1.34":"rack1", "192.168.1.49":"rack2", "192.168.1.50":"rack2", "192.168.1.51":"rack2", "192.168.1.52":"rack2", "192.168.1.53":"rack2", "192.168.1.54":"rack2", } if __name__=="__main__": print "/" + rack.get(sys.argv[1],"rack0")
2 将脚本赋予可执行权限chmod +x RackAware.py,并放到bin/目录下。
3 然后打开conf/core-site.html
<property> <name>topology.script.file.name</name> <value>/opt/modules/hadoop/hadoop-1.0.3/bin/RackAware.py</value> <!--机架感知脚本路径--> </property> <property> <name>topology.script.number.args</name> <value>20</value> <!--机架服务器数量,由于我写了20个,所以这里写20--> </property>
4 重启Hadoop集群
namenode日志
2012-06-08 14:42:19,174 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* NameSystem.registerDatanode: node registration from 192.168.1.49:50010 storage DS-1155827498-192.168.1.49-50010-1338289368956 2012-06-08 14:42:19,204 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /rack2/192.168.1.49:50010 2012-06-08 14:42:19,205 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* NameSystem.registerDatanode: node registration from 192.168.1.53:50010 storage DS-1773813988-192.168.1.53-50010-1338289405131 2012-06-08 14:42:19,226 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /rack2/192.168.1.53:50010 2012-06-08 14:42:19,226 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* NameSystem.registerDatanode: node registration from 192.168.1.34:50010 storage DS-2024494948-127.0.0.1-50010-1338289438983 2012-06-08 14:42:19,242 INFO org.apache.hadoop.net.NetworkTopology: Adding a new node: /rack1/192.168.1.34:50010 2012-06-08 14:42:19,242 INFO org.apache.hadoop.hdfs.StateChange: BLOCK* NameSystem.registerDatanode: node registration from 192.168.1.54:50010 storage DS-767528606-192.168.1.54-50010-1338289412267 2012-06-08 14:42:49,492 INFO org.apache.hadoop.hdfs.StateChange: STATE* Network topology has 2 racks and 10 datanodes 2012-06-08 14:42:49,492 INFO org.apache.hadoop.hdfs.StateChange: STATE* UnderReplicatedBlocks has 0 blocks 2012-06-08 14:42:49,642 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: ReplicateQueue QueueProcessingStatistics: First cycle completed 0 blocks in 0 msec 2012-06-08 14:42:49,642 INFO org.apache.hadoop.hdfs.server.namenode.FSNamesystem: ReplicateQueue QueueProcessingStatistics: Queue flush completed 0 blocks in 0 msec processing time, 0 msec clock time, 1 cycles