「程序员必须掌握的算法」动态规划「上篇」

简介: 「程序员必须掌握的算法」动态规划「上篇」

#程序员必须掌握哪些算法?#

动态规划详解

动态规划 (Dynamic Programming) 是一种算法思想,用于解决一些复杂的问题。本文将介绍动态规划的分类、概念和经典例题讲解。

动态规划的分类

动态规划可以分为以下两种类型:

  1. 0/1背包问题:该问题是动态规划的一种基本类型。在背包问题中,有n个物品可以放入容量为W的背包中,每个物品有自己的重量和价值。需要选择哪些物品能够最大化背包的总价值。
  2. 最长公共子序列问题:该问题是另一种经典的动态规划类型,涉及到两个字符串,并找到这两个字符串之间的最长公共子序列。

动态规划的概念

在解决动态规划问题时,我们需要定义以下概念:

  1. 状态 (State):问题中需要优化的变量,如背包问题中的容量,最长公共子序列问题中的字符串长度等。
  2. 状态转移方程 (State Transition Equation):描述状态之间的转移过程,即问题的递推关系。例如,在背包问题中,每个物品可以放入背包或不放入背包。因此,状态转移方程可以表示为:image.png其中dp[i][j]表示在使用前i个物品时,填满j容量的背包的最大价值。
  3. 初始状态 (Initial State):问题的初始条件,通常为问题规模最小的情况下的答案。在背包问题中,初始状态为dp[0][0]=0。
  4. 边界状态 (Boundary State):问题的边界条件,在状态转移过程中需要特别处理的状态。在背包问题中,背包的容量不能为负数,因此需要在状态转移方程中特别处理。

经典例题讲解

下面我们将分别介绍0/1背包问题和最长公共子序列问题的解法。

1. 0/1背包问题

题目描述:有n个物品和一个容量为W的背包。第i个物品的重量为wi,价值为vi。现在,需要选择一些物品放入背包,使得放入的物品的总重量不超过W,且总价值最大。求最大价值。

解题思路:定义状态dp[i][j]为在使用前i个物品时,填满j容量的背包的最大价值。状态转移方程如下所示:image.png其中dp[i-1][j]表示不放入第i个物品的最大价值,dp[i-1][j-w[i]]+v[i]表示将第i个物品加入背包的最大价值。需要注意的是,如果当前背包容量小于物品的重量,就不能将该物品放入背包。因此,需要特别处理背包容量小于物品重量的情况。

代码实现:

int dp[101][1001];
int weight[101], value[101];
int knapSack(int n, int w)
{
    memset(dp, 0, sizeof(dp));
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= w; j++) {
            if (j < weight[i]) {
                dp[i][j] = dp[i-1][j];
            } else {
                dp[i][j] = max(dp[i-1][j], dp[i-1][j-weight[i]]+value[i]);
            }
        }
    }
    return dp[n][w];
}

2. 最长公共子序列问题

题目描述:给定两个字符串A和B,找到它们的最长公共子序列 (LCS)。

解题思路:定义状态dp[i][j]为字符串A的前i个字符和字符串B的前j个字符的LCS长度。状态转移方程如下所示:image.png

当A[i-1]等于B[j-1]时,dp[i][j]等于dp[i-1][j-1]+1,表示A和B中的相同字符加上它们前面的LCS。当它们不相等时,LCS为它们前面的LCS的最大值,即dp[i-1][j]和dp[i][j-1]的最大值。

代码实现:

int dp[1001][1001];
string A, B;
int LCS(int n, int m)
{
    for (int i = 0; i <= n; i++) {
        for (int j = 0; j <= m; j++) {
            if (i == 0 || j == 0) {
                dp[i][j] = 0;
            } else if (A[i-1] == B[j-1]) {
                dp[i][j] = dp[i-1][j-1] + 1;
            } else {
                dp[i][j] = max(dp[i-1][j], dp[i][j-1]);
            }
        }
    }
    return dp[n][m];
}

结语

动态规划是一种非常重要的算法思想,它通常用于解决复杂的问题。在应用动态规划解决问题时,需要注意定义状态、状态转移方程、初始状态和边界状态等概念。对于不同类型的动态规划问题,需要采用不同的解决方法。希望本文能够帮助读者加深对动态规划的理解。

相关文章
|
1月前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
56 1
|
1月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
8天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
25 2
|
1月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
64 2
动态规划算法学习三:0-1背包问题
|
1月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
65 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
1月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
118 0
动态规划算法学习二:最长公共子序列
|
1月前
|
负载均衡 监控 算法
每个程序员都应该知道的 6 种负载均衡算法
每个程序员都应该知道的 6 种负载均衡算法
95 2
|
1月前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
|
1月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
99 0
|
1月前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)